US009338691B2 # (12) United States Patent Kim et al. # (10) Patent No.: US 9,338,691 B2 # (45) **Date of Patent:** May 10, 2016 #### (54) METHOD AND APPARATUS FOR ENCODING TRANSPORT BLOCK (71) Applicant: LG ELECTRONICS INC., Seoul (KR) (72) Inventors: Bong Hoe Kim, Seoul (KR); Dong Youn Seo, Seoul (KR); Joon Kui Ahn, Seoul (KR) (73) Assignee: LG ELECTRONICS INC., Seoul (KR) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. (21) Appl. No.: 14/861,849 (22) Filed: Sep. 22, 2015 #### (65) Prior Publication Data US 2016/0014637 A1 Jan. 14, 2016 #### Related U.S. Application Data - (63) Continuation of application No. 14/074,137, filed on Nov. 7, 2013, now Pat. No. 9,160,485. - (60) Provisional application No. 61/732,893, filed on Dec. 3, 2012. - (51) Int. Cl. H04W 4/00 (2009.01) H04W 28/06 (2009.01) H04L 27/34 (2006.01) H04B 7/04 (2006.01) (52) U.S. Cl. CPC *H04W 28/06* (2013.01); *H04B 7/0413* 4W 28/06 (2013.01); H04B //0413 (2013.01); H04L 27/34 (2013.01) # (58) Field of Classification Search None Birch, LLP See application file for complete search history. #### (56) References Cited #### U.S. PATENT DOCUMENTS 8,266,513 B2 9/2012 Kim et al. 2009/0077446 A1 3/2009 Seo et al. 2012/0311397 A1 12/2012 Kim et al. Primary Examiner — Chi H Pham Assistant Examiner — Fahmida Chowdhury (74) Attorney, Agent, or Firm — Birch, Stewart, Kolasch & ### (57) ABSTRACT A method for encoding a transport block in a wireless communication system, and a wireless apparatus therefore are discussed. The method according to one embodiment includes determining a size of the transport block; attaching a first cyclic redundancy check (CRC) code to the transport block having the determined size to produce a first CRCattached transport block; segmenting the first CRC-attached transport block into a plurality of code blocks when a size of the first CRC-attached transport block is larger than a maximum code block size; attaching a second CRC code to each of the plurality of code blocks to produce a plurality of second CRC-attached code blocks; and encoding the second CRCattached code blocks by a turbo-encoder. The size of the transport block is determined from among a plurality of first predetermined transport block sizes and a plurality of second predetermined transport block sizes. #### 10 Claims, 14 Drawing Sheets FIG. 1 FIG. 2 FIG. 3 FIG. 4 May 10, 2016 FIG. 5 FIG. 6 FIG. 7 May 10, 2016 PHICH DDSCH PDCCH region FIG. 8 FIG. 9 a dynamic size of (a) transport block(s) transmitted from MAC layer Adding CRC per CRC - S900 CRC a transportblock segmentation of codeblock and adding Segmentation S910 Segmentation CRC per a codeblock **FEC** turbo coding S920 **FEC** rate matching and RM+HARQ S930 RM+HARQ physical layer HARQ scrambling per bit Scrambling S940 Scrambling data modulation Modulation - S950 Modulation - S960 antenna mapping Antenna mapping the number of antenna port not more than 4 resource block Mapping Mapping mapping S970 FIG. 10 FIG. 11 FIG. 12 May 10, 2016 | | Eve | n nu | mbe | red s | slot | | | Od | d nu | mbe | red s | lot | | |------|--------------|------|-----|-------|------|---|----|------------------|------|-----|-------------|-----|---| | T1 | \T3\
\T3\ | D | D | T2 | D | D | T1 | T4 | D | D | ///
/T2/ | D | D | | D | О | D | D | D | D | D | О | D | D | D | D | О | D | | D | Д | D | Δ | D | D | Δ | Δ | D | D | Δ | D | D | D | | /T2/ | | D | D | T1 | D | D | T2 | \mathbb{Z}_{1} | D | D | T1 | D | D | | D | О | D | D | D | D | D | D | О | D | D | D | D | D | | D | О | D | D | D | D | D | D | D | D | D | D | D | D | | T1 | (E) | D | D | T2 | D | D | T1 | T4 | D | D | T2 | D | D | | D | О | D | D | D | D | D | D | D | D | D | D | D | D | | D | О | D | D | D | D | D | D | О | D | D | D | О | D | | /T2/ | 14
14 | D | D | T1 | D | D | T2 | 13 | D | D | T1 | D | D | | D | D | D | D | D | D | D | D | D | D | D | D | D | D | | D | D | D | D | D | D | D | D | D | D | D | D | D | D | Reference signal for TX antenna 1 Reference signal for TX antenna 2 Reference signal for TX antenna 3 Reference signal for TX antenna 4 Data D FIG. 13 FIG. 14 # METHOD AND APPARATUS FOR ENCODING TRANSPORT BLOCK # CROSS-REFERENCE TO RELATED APPLICATIONS This application is a Continuation of co-pending U.S. application Ser. No. 14/074,137 filed on Nov. 7, 2013, which claims the benefit of priority of U.S. Provisional Application No. 61/732,893 filed on Dec. 3, 2012. All these applications are incorporated by reference in their entirety herein. #### BACKGROUND OF THE INVENTION #### 1. Field of the Invention The present invention relates to wireless communications, and more particularly, to a method and apparatus for encoding a transport block. ## 2. Related Art Extensive researches are underway in LTE (long term evolution) release 12 to improve performance in terms of capacity, coverage, coordination between cells, and costs. There is an ongoing discussion to introduce various techniques in the LTE release 12 in a technical aspect to improve performance, such as small cell enhancement, macro cell enhancement, 25 new carrier type, machine type communication, etc. The LTE release 12 aims at improving the capacity and coverage, which may be achieved by using small cell enhancement based on inter-site carrier aggregation, LTE-WLAN (wireless local area network) integration, and micro cell enhancement. Assuming a case where a cell is decreased in size, inter-cell movement of a terminal occurs frequently, which may result in an increase in an amount of traffic signaled when the terminal moves. To solve such a problem, a method of optimizing a small cell by decreasing signaling transmitted from an RAN (radio access network) to a core network on the basis of the small cell enhancement is under discussion in the LTE release 12. In addition, an NCT (new carrier type) discussed in the LTE release 12 is a frame type which is newly defined differ- 40 ently from a legacy frame structure. Although the NCT can be a carrier type optimized for a small cell, it can also be applied to a macro cell. For example, in the NCT, an overhead generated by transmitting a reference signal such as a CRS (cellspecific reference signal) can be decreased, and a downlink 45 control channel can be demodulated on the basis of a DM-RS (demodulation reference signal). By newly defining the NCT, energy of a base station can be saved, and an interference generated in a HetNet (heterogeneous network) can be decreased. In addition, the use of the NCT can decrease a 50 reference signal overhead generated in data transmission using a plurality of downlink antennas. More specifically, although the legacy frame structure (e.g., a CP (cyclic prefix) length, a subframe structure, a duplexing mode, etc.) is maintained in the NCT, a control channel and/or a reference signal 55 can be newly defined. #### SUMMARY OF THE INVENTION The present invention provides a method of encoding a 60 transport block. The present invention also provides an apparatus for encoding a transport block. According to one aspect of the present invention, a method for encoding a transport block in a wireless communication 65 system is provided. The method includes: determining, by a transmitter, a size of transport block; dividing, by the trans- 2 mitter, the transport block into at least one code block based on the size of transport block; interleaving, by the transmitter, the at least one code block by an interleaver; and performing, by the transmitter, a turbo coding for the interleaved at least one code block, wherein the size of transport block is determined based on the number of the divided code blocks. According to another aspect of the present invention, a wireless apparatus configured for encoding a transport block in a wireless communication system is provided. The wireless apparatus includes: a transceiver configured to receive radio signals; and a processor operatively coupled with the transceiver and configured to: determine a size of transport block; divide the transport block into at least one code block based on the size of transport block; interleave the at least one code block by an interleaver; and perform a turbo coding for the interleaved at least one code block, wherein the size of transport block is determined based on a number of the divided code blocks. Data transmission and reception performance can be improved by decreasing the number of dummy bits when coding a transport block. #### BRIEF DESCRIPTION OF THE DRAWINGS FIG. ${\bf 1}$ shows a radio frame structure in LTE (long term evolution). ${\rm FIG.}\,\mathbf{2}$ shows an example of a resource grid for one downlink slot. FIG. 3 shows a structure of a downlink subframe. FIG. 4 shows a structure of an uplink subframe. FIG. **5** is a block diagram showing a method of generating PDCCH (physical downlink control channel) data. FIG. 6 shows an example of monitoring a PDCCH. FIG. 7 shows a downlink subframe to which a reference signal and a control channel are allocated in 3GPP (3rd generation partnership project) LTE. FIG. 8 is an example of a subframe having an EPDCCH (enhanced PDCCH). FIG. 9 shows the concept of a method of processing a downlink transport channel according to an embodiment of the present invention. $\bar{\mathrm{FIG}}.10\,\mathrm{shows}$ the concept of a method of performing code block segmentation. FIG. 11 shows the concept of a method of performing rate matching. FIG. 12 shows the concept of a resource block pair according to an embodiment of the present invention. FIG. 13 is a flowchart showing a method of performing turbo coding for a transport block according to an embodiment of the present invention. FIG. 14 is a block diagram of a wireless communication system according to an embodiment of the present invention. # DESCRIPTION OF EXEMPLARY EMBODIMENTS A wireless device may be fixed or mobile, and may be referred to as another terminology, such as a
UE (user equipment), an MS (mobile station), an MT (mobile terminal), a UT (user terminal), an SS (subscriber station), a PDA (personal digital assistant), a wireless modem, a handheld device, a terminal, a wireless terminal, etc. The wireless device may also be a device supporting only data communication such as an MTC (machine-type communication) device. A BS (base station) is generally a fixed station that communicates with the wireless device, and may be referred to as another terminology, such as an eNB (evolved-NodeB), a BTS (base transceiver system), an access point, etc. Operations of a UE and/or a BS in 3GPP (3rd generation partnership project) LTE (long term evolution) or 3GPP LTE-A defined based on each of releases of 3GPP TS (technical specification) will be described hereinafter. In addition, the present invention may also apply to various wireless communication networks other than the 3GPP LTE/3GPP LTE-A. In the following description, LTE and/or LTE-A are collectively referred to as LTE. FIG. 1 shows a radio frame structure in LTE. In 3GPP LTE, a structure of a radio frame **100** is disclosed in the section 5 of 3GPP TS 36.211 V8.2.0 (2008-03) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical 15 channels and modulation (Release 8)". Referring to FIG. 1, the radio frame 100 consists of 10 subframes 120. One subframe 120 consists of two slots 140. The radio frame 100 may be indexed based on the slots 140 indexed from a slot #0 to a slot #19, or may be indexed based 20 on the subframes 120 indexed from a subframe #0 to a subframe #9. For example, the subframe #0 may include the slot #0 and the slot #1. A time required to transmit one subframe **120** is defined as a TTI (transmission time interval). The TTI may be a scheduling unit for data transmission. For example, a length of one radio frame **100** may be 1 millisecond (ms), a length of one subframe **120** may be 1 ms, and a length of one slot **140** may be 0.5 ms. One slot 140 includes a plurality of OFDM (orthogonal 30 frequency division multiplexing) symbols in a time domain, and includes a plurality of subcarriers in a frequency domain. In LTE, a BS uses OFDMA as an access scheme in a downlink channel. The OFDM symbol is for representing one symbol period, and may be referred to as other terms according to a 35 multiple access scheme. For example, an SC-FDMA (single carrier-frequency division multiple access) may be used as the multiple access scheme in an uplink channel in which data is transmitted from a UE to a BS. A symbol duration in which data is transmitted through the uplink channel may be called 40 an SC-FDMA symbol. The structure of the radio frame 100 described in FIG. 1 is one embodiment for a frame structure. Therefore, the number of subframes 120 included in the radio frame 100, the number of slots 140 included in the subframe 120, or the number of 45 OFDM symbols included in the slot 140 may be changed variously to define a new radio frame format. In the structure of the radio frame, the number of symbols included in one slot may vary depending on which CP (cyclic prefix) is used. For example, if the radio frame uses a normal 50 CP, one slot may include 7 OFDM symbols. If the radio frame uses an extended CP, one slot may include 6 OFDM symbols. As a duplexing scheme, a wireless communication system may use an FDD (frequency division duplex) scheme, a TDD (time division duplex) scheme, etc. In the FDD scheme, 55 uplink transmission and downlink transmission may be performed based on different frequency bands. In the TDD scheme, uplink transmission and downlink transmission may be performed by using a time-based division scheme based on the same frequency band. Channel responses of the TDD 60 scheme may have a reciprocal property since the same frequency band is used. That is, in the TDD scheme, a downlink channel response and an uplink channel response may be almost identical in a given frequency domain. Therefore, a TDD-based wireless communication system may acquire 65 channel state information of a downlink channel from channel state information of an uplink channel. In the TDD sys- 4 tem, a full frequency band is time-divided into uplink transmission and downlink transmission, and thus downlink transmission performed by the BS and uplink transmission performed by the UE may be performed simultaneously. FIG. 2 shows an example of a resource grid for one downlink slot. The downlink slot includes a plurality of OFDM symbols in a time domain, and includes NRB resource blocks in a frequency domain. The number NRB of resource blocks included in the downlink slot may be determined according to a downlink transmission bandwidth configured in a cell. For example, in the LTE system, NRB may be any one value in the range of 60 to 110 according to a transmission bandwidth in use. One resource block **200** may include a plurality of subcarriers in the frequency band. A structure of an uplink slot may be the same as the aforementioned structure of the downlink slot. Each element on the resource grid is referred to as a resource element **220**. The resource element **220** on the resource grid may be identified by an index pair (k,l). Herein, $k(k=0,\ldots,NRB\times12-1)$ denotes a subcarrier index in the frequency domain, and $l(l=0,\ldots,6)$ denotes an OFDM symbol index in the time domain. Herein, one resource block **200** may include 7×12 resource elements **220** consisting of 7 OFDM symbols in the time domain and 12 subcarriers in the frequency domain. Such a size is one example, and thus the number of OFDM symbols and the number of subcarriers constituting one resource block **200** may change. A resource block pair indicates a resource unit including two resource blocks. The number of OFDM symbols included in one slot may have a different value depending on a CP as described above. In addition, the number of resource blocks included in one slot may vary depending on a size of a full frequency bandwidth. FIG. 3 shows a structure of a downlink subframe. A downlink subframe 300 may be divided into two slots 310 and 320 according to a time. Each of the slots 310 and 320 includes 7 OFDM symbols in a normal CP case. A resource region corresponding to first three OFDM symbols (i.e., in case of 1.4 MHz bandwidth, up to 4 OFDM symbols) included in the first slot 310 of the subframe 300 may be used as a control region 350 to which control channels are allocated. The remaining OFDM symbols may be used as a data region 360 to which a traffic channel such as a PDSCH (physical downlink shared channel) is allocated. A PDCCH (physical downlink control channel) may be a control channel for transmitting a resource allocation and transmission format of a DL-SCH (downlink-shared channel), resource allocation information of a UL-SCH (uplink shared channel), paging information on a PCH, system information on a DL-SCH, a resource allocation of a higher layer control message such as a random access response transmitted through a PDSCH, a transmission power control command for individual UEs included in any UE group, activation of a VoIP (voice over internet protocol), etc. A plurality of units of transmitting PDCCH data may be defined within the control region 350. The UE may acquire control data by monitoring the plurality of units of transmitting the PDCCH data. For example, the PDCCH data may be transmitted to the UE on the basis of an aggregation of one or several consecutive CCEs (control channel elements). The CCE may be one unit of transmitting the PDCCH data. The CCE may include a plurality of resource element groups. The resource element group is a resource unit including four available resource elements. A BS determines a PDCCH format according to DCI (downlink control information) to be transmitted to a UE, and attaches a CRC (cyclic redundancy check) to control information. The CRC is masked with a unique identifier (referred to as an RNTI (radio network temporary identifier)) according to an owner or usage of the PDCCH. If the PDCCH is for a specific UE, a unique identifier (e.g., C-RNTI (cell-RNTI)) of the UE may be masked to the CRC. Alternatively, if the PDCCH is for a paging message, a paging indicator identifier (e.g., P-RNTI (paging-RNTI)) may be masked to the CRC. If the PDCCH is for an SIB (system information block), a system information identifier and an SI-RNTI (system information-RNTI) may be masked to the CRC. To indicate a random access response that is a response for transmission of a random access preamble of the UE, an RA-RNTI (random 15 access-RNTI) may be masked to the CRC. FIG. 4 shows a structure of an uplink subframe. The uplink subframe may be divided into control regions 430 and 440 and a data region 450. A PUCCH (physical uplink control channel) for carrying uplink control information is allocated to the control regions 430 and 440. A PUSCH (physical uplink shared channel) for carrying data is allocated to the data region 450. When indicated by a higher layer, a UE may support simultaneous transmission of the PUSCH and the PUCCH. The PUCCH for one UE is allocated in an RB (resource block) pair in a subframe. RBs belonging to the RB pair occupy different subcarriers in each of a 1st slot 410 and a 2nd slot 420. A frequency occupied by the RBs belonging to the RB pair changes at a slot boundary. This is called that the RB pair allocated to the PUCCH is frequency-hopped at the slot boundary. Since the UE transmits the UCI on a time basis through different subcarriers, a frequency diversity gain can be obtained. m is a location index indicating a logical frequency-domain location of the RB pair allocated to the 35 PUCCH in the subframe. Examples of uplink control information transmitted on a PUCCH may include HARQ (hybrid automatic repeat request) ACK (acknowledgement)/NACK (non-acknowledgement), CQI (channel quality indicator) indicating a 40
downlink channel state, SR (scheduling request) which is an uplink radio resource allocation request, etc. The PUSCH is a channel mapped to a UL-SCH (uplink shared channel) which is a transport channel. Uplink data transmitted through the PUSCH may be a transport block 45 which is a data block for the UL-SCH transmitted during a TTI. The transport block may include user information. In addition, the uplink data may be multiplexed data. The multiplexed data may be obtained by multiplexing control information and a transport block for the UL-SCH. Examples of 50 the control information multiplexed to the data may include CQI, PMI (precoding matrix indicator), HARQ ACK/NACK, RI (rank indicator), etc. Alternatively, the uplink data may consist of only the control information. FIG. 5 is a block diagram showing a method of generating 55 PDCCH data. In FIG. 5, a method of generating PDCCH data is described in detail A UE performs blind decoding to detect a PDCCH. The blind decoding may be performed on the basis of an identifier 60 masked to a CRC (cyclic redundancy check) of a received PDCCH (referred to as a candidate PDCCH). By checking an CRC error of the received PDCCH data, the UE may determine whether the PDCCH data is its own control data. A BS determines a PDCCH format according to DCI 65 (downlink control information) to be transmitted to the UE and thereafter attaches a CRC to the DCI, and masks a unique 6 identifier (referred to as an RNTI (radio network temporary identifier)) to the CRC according to an owner or usage of the PDCCH (block **510**). If the PDCCH is for a specific UE, the BS may mask a unique identifier (e.g., C-RNTI (cell-RNTI)) of the UE to the CRC. Alternatively, if the PDCCH is for a paging message, the BS may mask a paging indication identifier (e.g., P-RNTI (paging-RNTI)) to the CRC. If the PDCCH is for system information, the BS may mask a system information identifier (e.g., SI-RNTI (system information-RNTI)) to the CRC. In addition thereto, the BS may mask an RA-RNTI (random access-RNTI) to the CRC in order to indicate a random access response that is a response for transmission of a random access preamble of the UE, and may mask a TPC-RNTI to the CRC in order to indicate a TPC (transmit power control) command for a plurality of UEs. A PDCCH masked with the C-RNTI may transmit control information for a specific UE (such information is called UE-specific control information), and a PDCCH masked with a different RNTI may transmit common control information received by all or a plurality of UEs in a cell. A plurality of DCI formats may be defined to transmit PDCCH data. This will be additionally described in detail. The BS encodes the CRC-attached DCI to generate coded 25 data (block **520**). Encoding includes channel encoding and rate matching. The BS generates modulation symbols by performing modulation on the coded data (block **530**). The BS maps the modulation symbols to physical REs (resource elements) (block **540**). The BS may map the modulation symbols to the respective REs. As described above, a control region in a subframe includes a plurality of CCEs (control channel elements). The CCE is a logical allocation unit used to provide the PDCCH with a coding rate depending on a radio channel state, and corresponds to a plurality of REGs (resource element groups). The REG includes a plurality of resource elements. One REG includes 4 REs. One CCE includes 9 REGs. The number of CCEs used to configure one PDCCH may be selected from a set $\{1, 2, 4, 8\}$. Each element of the set $\{1, 2, 4, 8\}$ is referred to as a CCE aggregation level. The BS may determine the number of CCEs used in transmission of the PDCCH according to a channel state. For example, if a downlink channel state is good, the BS may use one CCE to transmit PDCCH data to the UE. On the contrary, if the downlink channel state is not good, the BS may use 8 CCEs to transmit PDCCH data to the UE. A control channel consisting of one or more CCEs may perform interleaving in an REG unit, and may be mapped to a physical resource after performing cyclic shift based on a cell ID (identifier). FIG. 6 shows an example of monitoring a PDCCH. The section 9 of 3GPP TS 36.213 V10.2.0 (2011-06) may be incorporated herein by reference. A UE may perform blind decoding to detect the PDCCH. The blind decoding is a scheme in which a specific identifier is de-masked from a CRC of received PDCCH (referred to as candidate PDCCH) data and thereafter whether the PDCCH is its own control channel is determined by performing CRC error checking. The UE cannot know about a specific position in a control region in which its PDCCH data is transmitted and about a specific CCE aggregation level or DCI format used in transmission. A plurality of PDCCHs may be transmitted in one subframe. The UE monitors the plurality of PDCCHs in every subframe. Herein, monitoring is an operation in which the UE attempts to perform blind decoding on the PDCCH. The 3GPP LTE uses a search space to reduce an overload caused when the UE performs the blind decoding. The search space may also be called a monitoring set of a CCE for PDCCH searching. The UE may monitor the PDCCH on the basis of the search space. The search space is classified into a common search space and a UE-specific search space. The common search space is a space for searching for a PDCCH having common control information and consists of 16 CCEs indexed with 0 to 15. The common search space supports a PDCCH having a CCE aggregation level of $\{4, 8\}$. However, a PDCCH (e.g., DCI formats 0, 1A) for carrying UE-specific information may also be transmitted in the common search space. The UE-specific search space supports a PDCCH having a CCE aggregation level of $\{1, 2, 4, 8\}$. Table 1 shows the number of PDCCH candidates monitored by the UE. TABLE 1 | : | Search space $S_k^{(L)}$ | Number of
PDCCH | | 20 | | |----------|--------------------------|--------------------|-------------------------------|---------------|----| | Type | Aggregation
level L | Size
[in CCEs] | candidates $\mathbf{M}^{(L)}$ | DCI
format | | | UE- | 1 | 6 | 6 | 0, 1, 1A, 1B, | 25 | | specific | 2 | 12 | 6 | 1D, 2, 2A | | | | 4 | 8 | 2 | | | | | 8 | 16 | 2 | | | | Common | 4 | 16 | 4 | 0, 1A, 1C, | | | | 8 | 16 | 2 | 3/3A | 30 | A size of search space is determined by Table 1 above, and a start point of the search space is defined differently in the common search space and the UE-specific search space. Although a start point of the common search space is fixed irrespective of a subframe, a start point of the UE-specific search space may vary in every subframe according to a UE identifier (e.g., C-RNTI), a CCE aggregation level, and/or a slot number in a radio frame. If the start point of the UE-specific search space exists in the common search space, the UE-specific search space and the common search space may overlap. A set of PDCCH candidates monitored by the UE may be defined according to the search space. In the aggregation level 1, 2, 4, or 8, a search space $S_k^{(L)}$ is defined as the set of 45 PDCCH candidates. In the search space $S_k^{(L)}$, a CCE corresponding to a PDCCH candidate m is given by Equation 1 below. $$L \cdot \{ (Y_k \! + \! m') \bmod \lfloor N_{CCE,k} \! / L \rfloor \} + i \qquad \qquad \leq \text{Equation 1} >$$ Herein, i=0, . . . , L-1. If the search space is a common search space, m'=m. If the search space is a UE-specific search space, m'=m+ $\mathbf{M}^{(L)}\cdot\mathbf{n}_{CI}$ when a CIF (carrier indicator field) is set to the UE, where \mathbf{n}_{CI} is a value of the set CIF. Further, m'=m when the CIF is not set to the UE. Herein, 55 m=0, . . . , $\mathbf{M}^{(L)}$ -1 where $\mathbf{M}^{(L)}$ is the number of PDCCH candidates for monitoring a given search space. In a common search space, Y_k is set to 0 with respect to two aggregation levels L=4 and L=8. In a UE-specific search space of the aggregation level L, a variable Y_k is defined by 60 Equation 2 below. $$Y_k = (A \cdot Y_{k-1}) \mod D$$ < Equation 2> Herein, $Y_{-1} = n_{RNTT} \neq 0$, A=39827, D=65537, k= $\lfloor n_s/2 \rfloor$. ns denotes a slot number in a radio frame. When a wireless device monitors a PDCCH on the basis of a C-RNTI, a search space and a DCI format to be monitored 8 are determined according to a transmission mode of a PDSCH. Table 2 below shows an example of PDCCH monitoring in which the C-RNTI is set. TABLE 2 | Transmission | | | Transmission mode of | |--------------|---------------|---------------------------|---| | mode | DCI format | search space | PDSCH based on PDCCH | | Mode 1 | DCI format 1A | common and
UE specific | Single antenna port, port 0 | | | DCI format 1 | UE specific | 2 1 /1 | | Mode 2 | DCI format 1A | common and UE specific | Transmit diversity | | | DCI format 1 | | Transmit diversity | | Mode 3 | DCI format 1A | common and
UE specific | Transmit diversity | | | DCI format 2A | UE specific | CDD (Cyclic Delay | | | | | Diversity) or Transmit
diversity | | Mode 4 | DCI format 1A | common and
UE specific | Transmit diversity | | | DCI format 2 | UE specific | Closed-loop spatial multiplexing | | Mode 5 | DCI format 1A | common and
UE specific | Transmit diversity | | | DCI format 1D | UE specific | MU-MIMO (Multi-user
Multiple Input Multiple
Output) | | Mode 6 | DCI format 1A | common and
UE specific | Transmit diversity | | | DCI format 1B | | Closed-loop spatial multiplexing | | Mode 7 | DCI format 1A | common and
UE specific | If the number of PBCH transmission ports is 1, single antenna port, port 0, otherwise Transmit diversity | | | DCI format 1 | UE specific | Single antenna port, port 5 | | Mode 8 | DCI format 1A | common and
UE specific | If the number of PBCH transmission ports is 1, single antenna port, port 0, otherwise,
Transmit diversity | | | DCI format 2B | UE specific | Dual layer transmission (port 7 or 8), or single antenna port, port 7 or 8 | The usage of the DCI format is classified as shown in Table 3 below. TABLE 3 | | DCI format | Contents | |---|---------------|---| | | DCI format 0 | It is used for PUSCH scheduling. | | | DCI format 1 | It is used for scheduling of one PDSCH codeword. | | | DCI format 1A | It is used for compact scheduling and random access process of one PDSCH codeword. | | , | DCI format 1B | It is used in simple scheduling of one PDSCH | | | | codeword having precoding information. | | | DCI format 1C | It is used for very compact scheduling of one PDSCH codeword. | | | DCI format 1D | It is used for simple scheduling of one PDSCH codeword having precoding and power offset information. | | | DCI format 2 | It is used for PDSCH scheduling of UEs configured to a closed-loop spatial multiplexing mode. | | | DCI format 2A | It is used for PDSCH scheduling of UEs configured to an open-loop spatial multiplexing mode. | | | DCI format 3 | It is used for transmission of a TPC command of a PUCCH and a PUSCH having a 2-bit power adjustment. | |) | DCI format 3A | It is used for transmission of a TPC command of a PUCCH and a PUSCH having a 1-bit power adjustment. | According to an RNTI masked to a CRC used when DCI is generated, a search space and a DCI format to be used may be set differently. Table 4 below shows a search space and a DCI format of a control channel used when SI-RNTI, P-RNTI, or RA-RNTI is masked to the CRC of the DCI. | DCI format | search
space | Transmission mode of PDSCH based on PDCCH | |------------------|-----------------|--| | DCI format
1C | common | If the number of PBCH transmission
ports is 1, single antenna port, port 0,
otherwise Transmit diversity | | DCI format
1A | common | If the number of PBCH transmission ports is 1, single antenna port, port 0, otherwise Transmit diversity | Table 5 below shows a DCI format and a search space of a control channel used when SPS-C-RNT is masked to the CRC of the DCI. TABLE 5 | Transmission
mode | DCI format | search space | Transmission mode of PDSCH based on PDCCH | |----------------------|---------------|---------------------------|---| | Mode 1 | DCI format 1A | common and
UE specific | Single antenna port, port 0 | | | DCI format 1 | UE specific | Single antenna port, port 0 | | Mode 2 | DCI format 1A | common and
UE specific | Transmit diversity | | | DCI format 1 | | Transmit diversity | | Mode 3 | DCI format 1A | | Transmit diversity | | | DCI format 2A | UE specific | Transmit diversity | | Mode 4 | DCI format 1A | common and
UE specific | Transmit diversity | | | DCI format 2 | UE specific | Transmit diversity | | Mode 5 | DCI format 1A | common and
UE specific | Transmit diversity | | Mode 6 | DCI format 1A | common and
UE specific | Transmit diversity | | Mode 7 | DCI format 1A | common and
UE specific | Single antenna port, port 5 | | | DCI format 1 | UE specific | Single antenna port, port 5 | | Mode 8 | DCI format 1A | common and
UE specific | Single antenna port, port 7 | | | DCI format 2B | UE specific | Single antenna port, port 7 or 8 | | Mode 9 | DCI format 1A | common and
UE specific | Single antenna port, port 7 | | | DCI format 2C | UE specific | Single antenna port, port 7 or 8 | | Mode 10 | DCI format 1A | common and
UE specific | Single antenna port, port 7 | | | DCI format 2D | UE specific | Single antenna port, port 7 or 8 | Table 6 below shows a DCI format and a search area of a control channel used when temporary C-RNTI is masked to the CRC of the DCI. TABLE 6 | DCI format | search space | Transmission mode of PDSCH based on PDCCH | |---------------|---------------------------|--| | DCI format 1A | common and
UE specific | If the number of PBCH transmission ports is 1, single antenna port, port 0, otherwise Transmit diversity | | DCI format 1 | UE specific | If the number of PBCH transmission ports is 1, single antenna port, port 0, otherwise Transmit diversity | FIG. 7 shows a downlink subframe to which a reference signal and a control channel are allocated in 3GPP LTE. The downlink subframe may be divided into a control region and a data region. For example, in the downlink subframe, the control region (or a PDCCH region) includes first 65 three OFDM symbols, and the data region in which a PDSCH is transmitted includes the remaining OFDM symbols. 10 A PCFICH, a PHICH, and/or a PDCCH are transmitted in the control region. A PHICH (physical HARQ ACK/NACK indicator channel) may transmit HARQ (hybrid automatic retransmission request) information in response to uplink transmission. A PCFICH (physical control format indicator channel) may transmit information regarding the number of OFDM symbols allocated to the PDCCH. For example, a control format indictor (CFI) of the PCFICH may indicate three OFDM symbols. A region excluding a resource in which the PCFICH and/or the PHICH are transmitted in the control region is a PDCCH region in which the UE monitors the PDCCH. Various reference signals may be transmitted in the sub-15 frame. A CRS (cell-specific reference signal) is a reference signal that can be received by all UEs in a cell, and may be transmitted across a full downlink frequency band. In FIG. 6, 'R0' indicates an RE used to transmit a CRS for a first antenna port, 'R1' indicates an RE used to transmit a CRS for a second antenna port, 'R2' indicates an RE used to transmit a CRS for a third antenna port, and 'R3' indicates an RE used to transmit a CRS for a fourth antenna port. An RS sequence $r_{l,n_c}(m)$ for a CRS is defined as follows. $$r_{l,ns}(m) = \frac{1}{\sqrt{2}}(1 - 2 \cdot c(2m)) + j\frac{1}{\sqrt{2}}(1 - 2 \cdot c(2m+1))$$ (Equation 3) Herein, m=0, 1, ..., $2N_{RB}^{max,DL}$ -1. $N_{RB}^{max,DL}$ is the maximum number of RBs. ns is a slot number in a radio frame. 1 is an OFDM symbol index in a slot. A pseudo-random sequence is defined by a length-31 gold sequence as follows. $$c(n)=(x_1(n+Nc)+x_2(n+Nc)) \mod 2$$ $x_1(n+31)=(x_1(n+3)+x_1(n)) \mod 2$ $$x_2(n+31)=(x_2(n+3)+x_2(n+2)+x_2(n+1)+x_2(n)) \mod 2$$ < Equation 4> Herein, Nc=1600, and a first m-sequence is initialized as $x1(0)=1, x1(n)=0, m=1, 2, \ldots, 30$. A second m-sequence is initialized as $c_{imit}=2^{10}\cdot(7\cdot(n_s+1)+l+1)\cdot(2\cdot N_{ID}^{cell}+1)+2\cdot N_{ID}^{cell}+N_{CP}$ at a start of each OFDM symbol. N_{ID}^{cell} is a physical cell identifier (PCI). N_{CP} is set to $N_{CP}=1$ in a normal CP case, and is set to $N_{CP}=0$ in an extended CP case. In addition, a URS (UE-specific Reference Signal) may be transmitted in the subframe. Whereas the CRS is transmitted in a full region of the subframe, the URS is a reference signal transmitted in a data region of the subframe and is used to demodulate the PDSCH. In FIG. 7, 'R5' indicates an RE used to transmit the URS. A DM-RS is a reference signal used to demodulate EPDCCH data. The URS may be transmitted in an RB in which resource mapping is performed on corresponding PDSCH data. Although R5 is indicated in FIG. 7 in addition to a region in which the PDSCH data is transmitted, this is for indicating a location of an RE to which the URS is mapped. The URS may be a reference signal which is demodulated only by a specific UE. An RS (reference signal) sequence $\mathbf{r}_{I,n_s}(\mathbf{m})$ for the URS is equivalent to Equation 3. In this case, $\mathbf{m} = 0, 1, \dots, 12 \mathbf{N}_{RB}^{PDSCH} - 1$, and \mathbf{N}_{RB}^{PDSCH} is the number of RBs used for transmission of a corresponding PDSCH. If the URS is transmitted through a single antenna, a pseudo-random sequence generator is initialized as $\mathbf{c}_{imi} = (\lfloor \mathbf{n}_s/2 \rfloor + 1) \cdot (2 \mathbf{N}_{ID}^{cell} + 1) \cdot 2^{16} + \mathbf{n}_{RNTI}$ at a start of each subframe. \mathbf{n}_{RNTI} is an identifier of a wireless device. The aforementioned initialization method is for a case where the URS is transmitted through the single antenna, and when the URS is transmitted through multiple antennas, the pseudo-random sequence generator is initialized as $\mathbf{c}_{init} = (\lfloor \mathbf{n}_s/2 \rfloor + 1) \cdot (2\mathbf{n}_{ID}^{(n_{SCID})} + 1) \cdot 2^{16n} + \mathbf{n}_{SCID}$ at a start of each subframe. \mathbf{n}_{SCID} is a parameter acquired from a DL (downlink) grant (e.g., a DCI format 2B or 2C) related to PDSCH transmission. The URS supports MIMO (Multiple Input Multiple Output) transmission. According to an antenna port or a layer, an RS sequence for the URS may be spread into a spread $_{10}$ sequence as follows. TABLE 7 | Layer | [w(0) w(1) w(2) w(3)] | _ | |-------|-------------------------|---| | 1 | [+1+1+1+1] | | | 2 | [+1-1+1-1] | | | 3 | [+1+1+1+1] | | | 4 | [+1-1+1-1] | | | 5 | [+1+1-1-1] | | | 6 | [-1-1+1+1] | | | 7 | [+1-1-1+1] | | | 8 | [-1+1+1-1] | | A layer may be defined as an information path which is input to a precoder. A rank is a non-zero eigenvalue of a 25 MIMO channel matrix, and is equal to the number of layers or the number of spatial streams. The layer may correspond to an antenna port for identifying a URS and/or a spread sequence applied to the URS. Meanwhile, the PDCCH is monitored in an area restricted 30 to the control region in the subframe, and a CRS transmitted in a full band is used to demodulate the PDCCH. As a type of control data is diversified and an amount of control data is increased, scheduling flexibility is decreased when using only the existing PDCCH. In addition, in order to decrease an 35 overhead caused by CRS
transmission, an EPDCCH (enhanced PDCCH) is introduced. FIG. 8 is an example of a subframe having an EPDCCH. The subframe may include zero or one PDCCH region 810 and zero or more EPDCCH regions 820 and 830. The EPDCCH regions 820 and 830 are regions in which a UE monitors the EPDCCH. The PDCCH region 810 is located in first three or up to 4 OFDM symbols of the subframe, whereas the EPDCCH regions 820 and 830 may be flexibly scheduled in an OFDM symbol located after the 45 PDCCH region 810. One or more EPDCCH regions **820** and **830** may be assigned to the UE. The UE may monitor EPDDCH data in the assigned EPDCCH regions **820** and **830**. The number/location/size of the EPDCCH regions **820** and 50 **830** and/or information regarding a subframe for monitoring the EPDCCH may be reported by a BS to the UE by using an RRC (radio resource control) message or the like. In the PDCCH region **810**, a PDCCH may be demodulated on the basis of a CRS. In the EPDCCH regions **820** and **830**, 55 instead of the CRS, a DM-RS may be defined for demodulation of the EPDCCH. The DM-RS may be transmitted in corresponding EPDCCH regions **820** and **830**. An RS sequence for the DM-RS is equivalent to Equation 3. In this case, m=0, 1, ..., $12N_{RB}^{max,DL}$ -1, and $N_{RB}^{max,DL}$, 60 and $N_{RB}^{max,DL}$ is a maximum number of RBs. A pseudorandom sequence generator may be initialized as $c_{init} = (\lfloor n_s / 2 \rfloor + 1) \cdot (2n_{ID,i}^{EPDCCH} + 1) \cdot (2^{16} + n_{SCID}^{EPDCCH}$ at a start of each subframe. ns is a slot number of a radio frame. $n_{ID,i}^{EPDCCH}$ is a cell index related to a corresponding EPDCCH region. 65 n_{SCID}^{EPDCCH} is a parameter given from higher layer signaling 12 Each of the EPDCCH regions 820 and 830 may be used to schedule a different cell. For example, an EPDCCH in the EPDCCH region 820 may carry scheduling information for a primary cell, and an EPDCCH in the EPDCCH region 830 may carry scheduling information for a secondary cell. When the EPDCCH is transmitted through multiple antennas in the EPDCCH regions 820 and 830, the same precoding as that used in the EPDCCH may be applied to a DM-RS in the EPDCCH regions 820 and 830. Comparing with a case where the PDCCH uses a CCE as a transmission resource unit, a transmission resource unit for the EPDCCH is called an ECCE (Enhanced Control Channel Element). An aggregation level may be defined as a resource unit for monitoring the EPDCCH. For example, when 1 ECCE is a minimum resource for the EPDCCH, it may be defined as an aggregation level L={1, 2, 4, 8, 16}. A search space may also be defined in an EPDCCH region. The UE may monitor an EPDCCH candidate on the basis of the aggregation level. FIG. 9 shows the concept of a method of processing a downlink transport channel according to an embodiment of the present invention. In FIG. 9, an operation of delivering a transport block to a physical layer via a transport channel is described. An LTE physical layer uses a higher layer, i.e., a MAC layer and a transport channel, to provide an interface. In case of single-antenna transmission, one transport block having a dynamic size exists for each TTI (transmission time interval). For example, in case of multi-antenna transmission, a transport block having a dynamic size may exist in plural (e.g., up to two) for each TTI. In FIG. 9, a processing procedure for DL-SCH transmission is described when performing an LTE downlink transmission process. A second processing procedure corresponding to a second transport block exists only in case of downlink spatial multiplexing. In the case of downlink spatial multiplexing, two transport blocks each having a different size may be combined through antenna mapping in general. Hereinafter, an LTE downlink transport channel processing method of FIG. 14 is described. ### (1) Inserting CRC Per Transport Block In a first step of transport channel processing, a 24-bit CRC may be calculated and attached to each transport block. By using the CRC, an error may be detected in a decoded transport block in a receiving end. When the detected error is reported and thus retransmission is requested, for example, a downlink HARQ protocol may be used. (2) Segmenting Code Block and Inserting CRC Per Transport Block An internal interleaver of an LTE turbo code may be restricted in a size thereof, and thus may be defined only for a code block size of which a maximum block size is limited to a specific bit. If a size of a transport block including a CRC attached to the transport block exceeds a maximum code block size, code block segmentation may be performed before turbo coding. The segmentation of the code block implies that the transport block is divided into smaller sized code blocks to conform to code block sizes defined in a turbo code. FIG. 10 shows the concept of a method of performing code block segmentation. Referring to FIG. 10, code block segmentation may imply that an additional CRC is calculated and attached for each code block. A code block which is correctly coded can be known more rapidly when each code block has a CRC. Accordingly, iterative decoding on a corresponding code block can be finished more rapidly. Therefore, processing power consumption of a UE can be decreased. If one transport block is one code block in the absence of the code block segmentation, the CRC may not be added to the code block. In the presence of the code block segmentation, whether the entirety of the transport block is correctly received can also be known indirectly from each of code block CRCs. In addition, by performing additional error detection based on the transport block CRC, it is possible to decrease a risk in which an error is not detected from a decoded transport block. #### (3) Turbo Coding In LTE, the existing WCDMA/HSPA turbo encoder internal interleaver is replaced with QPP (quadrature permutation polynomial)-based interleaving. Unlike the interleaver of the WCDMA/HSPA turbo code, the QPP-based interleaver is a maximum contention-free interleaver, and thus parallelization of a decoding process is possible simply without a collision risk even if different parallel processes access to an interleaver memory. ### (4) Rate Matching and Physical Layer HARQ Function Rate matching and physical layer HARQ take a role of 20 correctly determining bits to be transmitted within a given TTI from blocks of code bits delivered from a channel encoder. Outputs of the turbo encoder (i.e., systematic bits, first parity bits, and second parity bits) may be preferentially interleaved respectively. The interleaved bits may enter to a 25 circular buffer. A bit selection block extracts consecutive bits from the circular buffer by an amount of allocated resources. FIG. 11 shows the concept of a method of performing rate matching. Referring to FIG. 11, since a constant amount of radio 30 resources are used in actual transmission, to cope with this situation, rate matching must be performed on an encoded code block. In general, the rate matching is achieved through puncturing or repetition. The rate matching may be performed in unit of an encoded code block such as WCDMA of 35 3GPP. It is shown in FIG. 11 that the method is performed separately on a system bit part and a parity bit part of the encoded code block. It is assumed herein that a code rate is ½. #### (5) Bit-Based Scrambling LTE downlink scrambling implies that a block of code bits 40 subjected to rate matching and HARQ is multiplied by a bit-based scrambling sequence. In LTE, downlink scrambling may be applied to a coded bit of each transport channel. #### (6) Data Modulation Downlink data modulation indicates a process of converting scrambled bits into complex-valued modulation symbols. Examples of a modulation scheme supported in an LTE downlink include QPSK, 16QAM, and 64QAM. Hereinafter, a case where 256 QAM is additionally supported as the modulation scheme will be described in the exemplary embodiment of the present invention. The modulation scheme may use 2 bits, 4 bits, and 6 bits respectively for QPSK, 16QAM, and 64QAM. Different modulation schemes may be used according to a transport channel. # (7) Antenna Mapping In general, antenna mapping takes a role of simultaneously processing modulation symbols corresponding to two transport blocks and of mapping results thereof to different antenna ports. ### (8) Resource Block Mapping Resource block mapping takes a role of mapping symbols to be transmitted to respective antenna ports to a resource element of resource blocks allocated to transport blocks transmitted to a UE by using a MAC scheduler. Some resource elements in the resource block are preoccupied by different antenna ports or control regions, and such resource elements cannot be used. 14 A BS may use a downlink control channel (e.g., PDCCH, EPDCCH) to deliver a data block size to a UE. Information on the data block size transmitted through a PDSCH may be transmitted based on resource allocation information and MCS which is modulation and coding rate related information. For an MCS field, MCS information may be transmitted to the UE on the basis of 5 bits for example. For resource allocation, one RB to 110 RBs may be allocated. If all of the 5 bits of the MCS field are used to transmit the MCS information without having to use MIMO, 32 pieces of MCS information may be transmitted based on the 5 bits. In this case, signaling is possible for a data block size corresponding to 32×110. However, since 3 pieces of MCS information out of the 32 pieces of MCS information are used to indicate a change of a modulation scheme when performing retransmission, signaling is actually possible for a data block size corresponding to 29×110. The data block may imply a transport block QPSK, 16QAM, and 64QAM may be used as a modulation scheme supported in the existing LTE system. At a switching point at which the modulation scheme is changed, the same data block size may be
indicated when the same resource is allocated. This is to effectively perform an operation in various channel environments. In order to indicate an actual data block size, IMCS which is MCS related information transmitted through a downlink control channel may be mapped to ITBS which is another variable for indicating a data block size. Table 8 below shows a relation between IMCS and ITBS. TABLE 8 | | MCS Index
I _{MCS} | Modulation Order Q_m | TBS Index I_{TBS} | |---|-------------------------------|--|---------------------| | | 0 | 2 | 0 | | | 1 | 2
2
2
2
2
2
2
2
2
2
2
2 | 1 | | | 2 | 2 | 2 | | | 3 | 2 | 3 | | | 4 | 2 | 4 | | | 5 | $\frac{-}{2}$ | 5 | | | 6 | 2 | 6 | | | 7 | 2 | 7 | | 1 | 8 | $\frac{-}{2}$ | 8 | | | 9 | 2 | 9 | | | 10 | 4 | 9 | | | 11 | 4 | 10 | | | 12 | 4 | 11 | | | 13 | 4 | 12 | | | 14 | 4 | 13 | | | 15 | 4 | 14 | | | 16 | 4 | 15 | | | 17 | 6 | 15 | | | 18 | 6 | 16 | | | 19 | 6 | 17 | | ı | 20 | 6 | 18 | | | 21 | 6 | 19 | | | 22 | 6 | 20 | | | 23 | 6 | 21 | | | 24 | 6 | 22 | | | 25 | 6 | 23 | | | 26 | 6 | 24 | | | 27 | 6 | 25 | | | 28 | 6 | 26 | | | 29 | 2 | reserved | | | 30 | 4 | | | | 31 | 6 | | The transport block size transmitted in a downlink may be determined by combining a resource allocation and an MCS field transmitted through the downlink control channel. Table 9 and Table 10 below respectively show a transport block size in the aforementioned IMCS-to-ITBS relation of Table 8 respectively for resource allocation of 1 RB to 10 RBs and resource allocation of 101 RBs to 110 RBs. 15 TABLE 9 | | N_{pp} | | | | | | | | | | |--------------------|----------|------|------|------|------|------|------|------|------|------| | \mathbf{I}_{TBS} | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | 0 | 16 | 32 | 56 | 88 | 120 | 152 | 176 | 208 | 224 | 256 | | 1 | 24 | 56 | 88 | 144 | 176 | 208 | 224 | 256 | 328 | 344 | | 2 | 32 | 72 | 144 | 176 | 208 | 256 | 296 | 328 | 376 | 424 | | 3 | 40 | 104 | 176 | 208 | 256 | 328 | 392 | 440 | 504 | 568 | | 4 | 56 | 120 | 208 | 256 | 328 | 408 | 488 | 552 | 632 | 696 | | 5 | 72 | 144 | 224 | 328 | 424 | 504 | 600 | 680 | 776 | 872 | | 6 | 328 | 176 | 256 | 392 | 504 | 600 | 712 | 808 | 936 | 1032 | | 7 | 104 | 224 | 328 | 472 | 584 | 712 | 840 | 968 | 1096 | 1224 | | 8 | 120 | 256 | 392 | 536 | 680 | 808 | 968 | 1096 | 1256 | 1384 | | 9 | 136 | 296 | 456 | 616 | 776 | 936 | 1096 | 1256 | 1416 | 1544 | | 10 | 144 | 328 | 504 | 680 | 872 | 1032 | 1224 | 1384 | 1544 | 1736 | | 11 | 176 | 376 | 584 | 776 | 1000 | 1192 | 1384 | 1608 | 1800 | 2024 | | 12 | 208 | 440 | 680 | 904 | 1128 | 1352 | 1608 | 1800 | 2024 | 2280 | | 13 | 224 | 488 | 744 | 1000 | 1256 | 1544 | 1800 | 2024 | 2280 | 2536 | | 14 | 256 | 552 | 840 | 1128 | 1416 | 1736 | 1992 | 2280 | 2600 | 2856 | | 15 | 280 | 600 | 904 | 1224 | 1544 | 1800 | 2152 | 2472 | 2728 | 3112 | | 16 | 328 | 632 | 968 | 1288 | 1608 | 1928 | 2280 | 2600 | 2984 | 3240 | | 17 | 336 | 696 | 1064 | 1416 | 1800 | 2152 | 2536 | 2856 | 3240 | 3624 | | 18 | 376 | 776 | 1160 | 1544 | 1992 | 2344 | 2792 | 3112 | 3624 | 4008 | | 19 | 408 | 840 | 1288 | 1736 | 2152 | 2600 | 2984 | 3496 | 3880 | 4264 | | 20 | 440 | 904 | 1384 | 1864 | 2344 | 2792 | 3240 | 3752 | 4136 | 4584 | | 21 | 488 | 1000 | 1480 | 1992 | 2472 | 2984 | 3496 | 4008 | 4584 | 4968 | | 22 | 520 | 1064 | 1608 | 2152 | 2664 | 3240 | 3752 | 4264 | 4776 | 5352 | | 23 | 552 | 1128 | 1736 | 2280 | 2856 | 3496 | 4008 | 4584 | 5160 | 5736 | | 24 | 584 | 1192 | 1800 | 2408 | 2984 | 3624 | 4264 | 4968 | 5544 | 5992 | | 25 | 616 | 1256 | 1864 | 2536 | 3112 | 3752 | 4392 | 5160 | 5736 | 6200 | | 26 | 712 | 1480 | 2216 | 2984 | 3752 | 4392 | 5160 | 5992 | 6712 | 7480 | TABLE 10 | | N_{PRR} | | | | | | | | | | |-----------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | I_{TBS} | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | | 0 | 2792 | 2856 | 2856 | 2856 | 2984 | 2984 | 2984 | 2984 | 2984 | 3112 | | 1 | 3752 | 3752 | 3752 | 3752 | 3880 | 3880 | 3880 | 4008 | 4008 | 4008 | | 2 | 4584 | 4584 | 4584 | 4584 | 4776 | 4776 | 4776 | 4776 | 4968 | 4968 | | 3 | 5992 | 5992 | 5992 | 5992 | 6200 | 6200 | 6200 | 6200 | 6456 | 6456 | | 4 | 7224 | 7224 | 7480 | 7480 | 7480 | 7480 | 7736 | 7736 | 7736 | 7992 | | 5 | 8760 | 9144 | 9144 | 9144 | 9144 | 9528 | 9528 | 9528 | 9528 | 9528 | | 6 | 10680 | 10680 | 10680 | 10680 | 11064 | 11064 | 11064 | 11448 | 11448 | 11448 | | 7 | 12216 | 12576 | 12576 | 12576 | 12960 | 12960 | 12960 | 12960 | 13536 | 13536 | | 8 | 14112 | 14112 | 14688 | 14688 | 14688 | 14688 | 15264 | 15264 | 15264 | 15264 | | 9 | 15840 | 16416 | 16416 | 16416 | 16416 | 16992 | 16992 | 16992 | 16992 | 17568 | | 10 | 17568 | 18336 | 18336 | 18336 | 18336 | 18336 | 19080 | 19080 | 19080 | 19080 | | 11 | 20616 | 20616 | 20616 | 21384 | 21384 | 21384 | 21384 | 22152 | 22152 | 22152 | | 12 | 22920 | 23688 | 23688 | 23688 | 23688 | 24496 | 24496 | 24496 | 24496 | 25456 | | 13 | 26416 | 26416 | 26416 | 26416 | 27376 | 27376 | 27376 | 27376 | 28336 | 28336 | | 14 | 29296 | 29296 | 29296 | 29296 | 30576 | 30576 | 30576 | 30576 | 31704 | 31704 | | 15 | 30576 | 31704 | 31704 | 31704 | 31704 | 32856 | 32856 | 32856 | 34008 | 34008 | | 16 | 32856 | 32856 | 34008 | 34008 | 34008 | 34008 | 35160 | 35160 | 35160 | 35160 | | 17 | 36696 | 36696 | 36696 | 37888 | 37888 | 37888 | 39232 | 39232 | 39232 | 39232 | | 18 | 40576 | 40576 | 40576 | 40576 | 42368 | 42368 | 42368 | 42368 | 43816 | 43816 | | 19 | 43816 | 43816 | 43816 | 45352 | 45352 | 45352 | 46888 | 46888 | 46888 | 46888 | | 20 | 46888 | 46888 | 48936 | 48936 | 48936 | 48936 | 48936 | 51024 | 51024 | 51024 | | 21 | 51024 | 51024 | 51024 | 52752 | 52752 | 52752 | 52752 | 55056 | 55056 | 55056 | | 22 | 55056 | 55056 | 55056 | 57336 | 57336 | 57336 | 57336 | 59256 | 59256 | 59256 | | 23 | 57336 | 59256 | 59256 | 59256 | 59256 | 61664 | 61664 | 61664 | 61664 | 63776 | | 24 | 61664 | 61664 | 63776 | 63776 | 63776 | 63776 | 66592 | 66592 | 66592 | 66592 | | 25 | 63776 | 63776 | 66592 | 66592 | 66592 | 66592 | 68808 | 68808 | 68808 | 71112 | | 26 | 75376 | 75376 | 75376 | 75376 | 75376 | 75376 | 75376 | 75376 | 75376 | 75376 | In the embodiment of the present invention, a method of determining a size of transport block (or data block) is 60 described when 256QAM is supported as a modulation scheme other than QPSK, 16QAM, and 64QAM supported in the existing LTE system. The size of transport block may be determined by distinguishing a case where the transport block is subjected to 65 channel coding as a single code block without being segmented in a process of code block segmentation and per-code block CRC insertion and a case where the transport block is subjected to channel coding by being segmented into multiple code blocks. If the transport block size including a CRC attached to the transport block exceeds a maximum code block size, the code block segmentation may be performed before turbo coding. The segmentation of code block implies that the transport block is segmented into smaller-sized code blocks to conform to a code block size defined in the turbo code. 18 TABLE 11-continued L In a case where channel coding is performed with the single code block without being segmented in the process of code block segmentation and per-code block CRC insertion, the transport block size may be determined according to an internal interleaver size of a turbo code in order not to attach a 5 dummy bit to the code block. | | tode block CKC illsertion, the | | 1 | <u> </u> | |---------------------------------|---------------------------------|----|------------|--------------| | transport block size may be de | termined according to an inter- | | 68 | 640 | | nal interleaver size of a turbo | code in order not to attach a | 5 | 69 | 656 | | dummy bit to the code block. | | 70 | 672 | | | | aiga af tha tamba anda intamal | | 71 | 688 | | | size of the turbo code internal | | 72 | 704 | | interleaver. | | | 73 | 720 | | | | | 74 | 736 | | TABI | 10 | 75 | 752 | | | | | | 76 | 768 | | i | L | | 77 | 784 | | | | | 78 | 800 | | 1 | 40 | | 79 | 816 | | 2 | 48 | | 80 | 832 | | 3 | 56 | 15 | 81 | 848 | | 4 | 64 | | 82 | 864 | | 5 | 72 | | 83 | 880 | | 6 | 80 | | 84 | 896 | | 7 | 88 | | 85 | 912 | | 8 | 96 | | 86 | 928 | | 9 | 104 | 20 | 87 | 944 | | 10 | 112 | | 88
89 | 960
976 | | 11 | 120 | | 90 | 992 | | 12 | 128 | | 90 | 1008 | | 13 | 136 | | 92 | 1024 | | 14
15 | 144 | | 93 | 1056 | | 16 | 152
160 | 25 | 94 | 1088 | | 17 | 168 | | 95 | 1120 | | 18 | 176 | | 96 | 1152 | | 19 | 184 | | 97 | 1184 | | 20 | 192 | | 98 | 1216 | | 21 | 200 | | 99 | 1248 | | 22 | 208 | 30 | 100 | 1280 | | 23 | 216 | | 101 | 1312 | | 24 | 224 | | 102 | 1344 | | 25 | 232 | | 103 | 1376 | | 26 | 240 | | 104 | 1408 | | 27 | 248 | | 105 | 1440 | | 28 | 256 | 35 | 106 | 1472 | | 29 | 264 | | 107 | 1504 | | 30 | 272 | | 108 | 1536 | | 31 | 280 | | 109 | 1568 | | 32 | 288 | | 110 | 1600 | | 33 | 296 | | 111 | 1632
1664 | | 34 | 304 | 40 | 112
113 | 1696 | | 35 | 312
320 | | 114 | 1728 | | 36
37 | 328 | | 115 | 1760 | | 38 | 336 | | 116 | 1792 | | 39 | 344 | | 117 | 1824 | | 40 | 352 | | 118 | 1856 | | 41 | 360 | 45 | 119 | 1888 | | 42 | 368 | | 120 | 1920 | | 43 | 376 | | 121 | 1952 | | 44 | 384 | | 122 | 1984 | | 45 | 392 | | 123 | 2016 | | 46 | 400 | | 124 | 2048 | | 47 | 408 | 50 | 125 | 2112 | | 48 | 416 | | 126 | 2176 | | 49 | 424 | | 127 | 2240 | | 50 | 432 | | 128 | 2304 | | 51 | 440 | | 129 | 2368 | | 52 | 448 | | 130
131 | 2432
2496 | | 53 | 456 | 55 | 132 | 2560 | | 54
55 | 464
472 | | 133 | 2624 | | 56 | 480 | | 134 | 2688 | | 56
57 | 488 | | 135 | 2752 | | 58 | 488 | | 136 | 2816 | | 59 | 504 | | 137 | 2880 | | 60 | 512 | 60 | 138 | 2944 | | 61 | 528 | | 139 | 3008 | | 62 | 544 | | 140 | 3072 | | 63 | 560 | | 141 | 3136 | | 64 | 576 | | 142 | 3200 | | 65 | 592 | | 143 | 3264 | | 66 | 608 | 65 |
144 | 3328 | | 67 | 624 | | 145 | 3392 | | | | | | | | | | | | | | TADLE II | -continued | | |------------|------------|----| |
i | L | | | 146 | 3456 | | | 147 | 3520 | 5 | | 148 | 3584 | | | 149 | 3648 | | | 150 | 3712 | | | 151 | 3776 | | | 152 | 3840 | | | 153 | 3904 | 10 | | 154 | 3968 | 1. | | 155 | 4032 | | | 156 | 4096 | | | 157 | 4160 | | | 158 | 4224 | | | 159 | 4288 | | | 160 | 4352 | 1: | | 161 | 4416 | | | 162 | 4480 | | | 163 | 4544 | | | 164 | 4608 | | | 165 | 4672 | | | 166 | 4736 | 20 | | 167 | 4800 | | | 168 | 4864 | | | | 4928 | | | 169
170 | | | | | 4992 | | | 171 | 5056 | 2: | | 172 | 5120 | 2. | | 173 | 5184 | | | 174 | 5248 | | | 175 | 5312 | | | 176 | 5376 | | | 177 | 5440 | | | 178 | 5504 | 31 | | 179 | 5568 | | | 180 | 5632 | | | 181 | 5696 | | | 182 | 5760 | | | 183 | 5824 | | | 184 | 5888 | 3: | | 185 | 5952 | 5. | | 186 | 6016 | | | 187 | 6080 | | | 188 | 6144 | | | | | | In Table 11, i may denote an index of a turbo code internal interleaver, and L may denote a size of the turbo code internal interleaver. According to the embodiment of the present invention, the transport block size may be defined according to the size of the turbo code internal interleaver. That is, the dummy bit may be removed by limiting the transport block size to L. Bits input to the turbo code internal interleaver may be denoted by $c_0, c_1, \ldots, c_{L-1}$. Herein, L denotes the number of input bits as a transport block size. Output bits calculated via the turbo code internal interleaver may be denoted by $c'_0, c'_1, \ldots, c'_{L-1}$. The input bit and the output bit may satisfy the relation of Equation 5 below. $$c'_i = c_{\Pi(i)}, i = 0, 1, \dots, (L-1)$$ < Equation 5> Herein, an output index i and an input index $\Pi(i)$ may ⁵⁵ satisfy Equation 6 below. $$\Pi(i)=(f_1\cdot i+f_2\cdot i^2) \mod L$$ < Equation 6> In Equation 6, a parameter f_1 and a parameter f_2 may be values determined by a table on the basis of a size L of a turbo 60 code internal interleaver (or a size of a transport block). According to the embodiment of the present invention, the dummy bit may be removed in channel coding if the transport block size is defined to be equal to the turbo code internal interleaver size L defined in Table 11. It is assumed herein that 65 the size of the transport block input to the turbo code internal interleaver is a size considering CRC attachment. For 20 example, if a 24-bit CRC is attached, the transport block size is L-24 which is obtained by subtracting 24 bits from the block size defined in Table 11. That is, in the embodiment of the present invention, the dummy bit may be removed by defining the transport block size to N=L-A. Herein, N,L, and A may respectively denote the transport block size, the turbo code internal interleaver size, and the CRC-bit size. If channel coding is performed by segmenting the transport block into multiple code blocks, the transport block size may be determined as follows. If the transport block is segmented into two or more code blocks, a CRC is attached to the transport block, and the CRC may also be attached to each segmented code block. When performing turbo coding on the transport block, a size corresponding to a sum of the code block size and a size of CRC attached to the code block must be set to the same as the internal interleaver size defined in Table 11 described above. In addition, it may be determined such that an error rate is not different between code blocks by equally setting the size of the segmented code block. Then, if it is assumed that a transport block with a size N is segmented into M (M>=2) code blocks each having a size L (where L is a size of a turbo code internal interleaver) and a CRC size is A (e.g., 24 bits), Equation 7 below must be satisfied so that the code blocks have the same size. $$N+A\times M+24=M^*(L+A)$$ $N=M\times L-A$ < Equation 7> The transport block size may be calculated by using Equation 7. The values L and M may be calculated by considering the defined turbo code internal interleaver size, and may be determined such that a dummy bit is not generated when performing turbo coding on each code block. Table 12 below shows a case where there are up to 24 code blocks among transport blocks satisfying the aforementioned condition. It is assumed in Table 12 that a CRC size is 24, and if the CRC size is changed, another value may be determined to the transport block size. TARLE 12 | TAI | BLE 12 | | |---|--------|--| | M | N | | | 2 | 6200 | | | 2 | 6328 | | | 2 | 6456 | | | 2 | 6584 | | | 2 | 6712 | | | 2 | 6840 | | | 2 | 6968 | | | 2 | 7096 | | | 2 | 7224 | | | 2 | 7352 | | | 2 | 7480 | | | 2 | 7608 | | | 2 | 7736 | | | 2 | 7864 | | | 2 | 7992 | | | 2 | 8120 | | | 2 | 8248 | | | 2 | 8376 | | | 2 | 8504 | | | 2 | 8632 | | | 2 | 8760 | | | 2 | 8888 | | | 2 | 9016 | | | 2 | 9144 | | | 2 | 9272 | | | 2 | 9400 | | | 2 | 9528 | | | 2 | 9656 | | | 2 | 9784 | | | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | 9912 | | | | | | | | | | TABLE 12-continued 22 TABLE 12-continued | IABLE I | 2-continued | | IABLE I | 2-continued | |---|----------------|-----|----------|----------------| | M | N | | M | N | | 2
2
2
2 | 10040 | | 5 | 25456 | | 2 | 10168 | 5 | 5 | 25776 | | 2 2 | 10296
10424 | | 5
5 | 26096
26416 | | 2 | 10552 | | 5 | 26736 | | 2
2 | 10680 | | 5 | 27056 | | 2 | 10808 | | 5 | 27376 | | 2
2 | 10936
11064 | 10 | 5
5 | 27696
28016 | | 2 | 11192 | | 5 | 28336 | | 2
2 | 11320 | | 5 | 28656 | | 2 | 11448 | | 5 | 28976 | | 2 2 | 11576 | | 5 | 29296 | | 2 2 | 11704
11832 | 15 | 5
5 | 29616
29936 | | 2 | 11960 | | 5 | 30256 | | 2 2 | 12088 | | 5 | 30576 | | 2 | 12216 | | 6 | 30936 | | 3 3 | 12384 | | 5
5 | 31320 | | 3 | 12576
12768 | 20 | 5
6 | 31704
32088 | | 3 | 12960 | | 6 | 32472 | | 3 | 13152 | | 6 | 32856 | | 3 | 13344 | | 6 | 33240 | | 3 3 | 13536
13728 | | 6
6 | 33624
34008 | | 3 | 13920 | 25 | 6 | 34392 | | 3 | 14112 | | 6 | 34776 | | 3 | 14304 | | 6 | 35160 | | 3 | 14496 | | 6 | 35544 | | 3 3 | 14688
14880 | | 6
6 | 35928
36312 | | 3 | 15072 | 30 | 6 | 36696 | | 3 | 15264 | 50 | 6 | 30936 | | 3 | 15456 | | 6 | 31320 | | 3 | 15648 | | 7
7 | 36992
37440 | | 3 3 | 15840
16032 | | 7 | 37440
37888 | | 3 | 16224 | 35 | 7 | 38336 | | 3 | 16416 | 33 | 7 | 38784 | | 3 | 16608 | | 7 | 39232 | | 3 3 | 16800
16992 | | 7
7 | 39680
40128 | | 3 | 17184 | | 7 | 40576 | | 3 | 17376 | 40 | 7 | 41024 | | 3 | 17568 | 40 | 7 | 41472 | | 3 3 | 17760
17952 | | 7
7 | 41920
42368 | | 3 | 17932
18144 | | 7 | 42308 | | 3 | 18336 | | 7 | 36992 | | 3 | 12384 | | 8 | 42792 | | 4 | 18568 | 45 | 8 | 43304 | | 4 | 18824
19080 | | 8
8 | 43816
44328 | | 4
4 | 19336 | | 8 | 44328
44840 | | 4 | 19592 | | 8 | 45352 | | 4 | 19848 | | 8 | 45864 | | 4 | 20104 | 50 | 8 | 46376 | | 4
4 | 20360
20616 | | 8
8 | 46888
47400 | | 4 | 20872 | | 8 | 47912 | | 4 | 21128 | | 8 | 48424 | | 4 | 21384 | | 8 | 49320 | | 4
4 | 21640
21896 | 55 | 9
9 | 49296
49872 | | 4 | 22152 | | 9 | 50448 | | 4 | 22408 | | 9 | 51024 | | 4 | 22664 | | 9 | 51600 | | 4 | 22920 | | 9 | 52176 | | 4
4 | 23176
23432 | 60 | 9
9 | 52752
53328 | | 4 | 23688 | | 9 | 53328
53904 | | 4 | 23944 | | 9 | 54480 | | 4 | 24200 | | 9 | 55488 | | 4 | 24456 | | 10 | 55416
56056 | | 5
5 | 24496
24816 | 65 | 10
10 | 56056
56696 | | 5 | 24816
25136 | 0.5 | 10 | 57336 | | , in the second | 20100 | | *** | 5,550 | **24** TABLE 12-continued | TABLE 1 | TABLE 12-continued | | TABLE 12-continued | |----------|--------------------|----|--| | M | N | | M N | | 10 | 57976 |
 22 130392 | | 10 | 58616 | 5 | 22 131800 | | 10
10 | 59256
59896 | | 22 133208
22 134616 | | 10 | 60536 | | 23 136320 | | 10 | 61656 | | 23 137792 | | 11 | 61664 | | 23 139264 | | 11 | 62368 | 10 | 23 140736
24 142248 | | 11
11 | 63072
63776 | | 24 142248
24 143784 | | 11 | 64480 | | 24 145320 | | 11 | 65184 | | 24 146856 | | 11 | 65888 | | | | 11
11 | 66592
67824 | 15 | In Table 12, M denotes the number of code blocks seg- | | 12 | 68040 | | mented from one transport block, and N denotes a size of | | 12 | 68808 | | transport block. The size of transport block may be set differ- | | 12 | 69576 | | antly according to the number of accomented and a blooks | | 12
12 | 70344
71112 | | ently according to the number of segmented code blocks. | | 12 | 71880 | 20 | When using the size of transport block defined in Table 11 | | 12 | 72648 | | and Table 12, a dummy bit may not be generated when per- | | 12 | 73992 | | forming channel coding. Accordingly, the same performance | | 13
13 | 74544
75376 | | may be guaranteed between code blocks. Therefore, accord- | | 13 | 76208 | | ing to the embodiment of the present invention, the size of | | 13 | 77040 | 25 | transport block may be calculated and used on the basis of | | 13 | 77872 | | Equation 6 and Equation 7 depending on the number of code | | 13 | 78704
80160 | | blocks segmented from one transport block. | | 13
14 | 80280 | | For example, on the basis of a combination of a modulation | | 14 | 81176 | | and coding rate and an allocation resource size, a BS may | | 14 | 82072 | 30 | report to a UE about information on a size of transport block | | 14
14 | 82968
83864 | | transmitted by the BS. The size of transport block may be | | 14 | 84760 | | expressed with the combination of the modulation and coding | | 14 | 85656 | | rate and the allocated resource size. The BS may determine | | 14 | 80280 | | the modulation and coding rate to be applied to a coded block | | 14
15 | 81176
86016 | 35 | by referring to a channel quality indicator transmitted by the | | 15 | 86976 | | UE. A size of resource allocated to the coded block may also | | 15 | 87936 | | be determined by considering a resource for transmitting | | 15 | 88896 | | control information and a resource for a reference signal for | | 15
15 | 89856
90816 | | channel estimation. | | 15 | 91776 | 40 | FIG. 12 shows the concept of a resource block pair accord- | | 16 | 92776 | | ing to an embodiment of the present invention. | | 16
16 | 93800
94824 | | Referring to FIG. 12, a horizontal axis represents a time | | 16 | 95848 | | domain, and a vertical axis represents a frequency domain. | | 16 | 96872 | | In the resource block pair of FIG. 12, it may be assumed | | 16 | 97896 | 45 | that resources for control information transmission are first | | 17
17 | 98576
99664 | | three OFDM symbols (i.e., an OFDM symbol 0, an OFDM | | 17 | 100752 | | symbol 1, and an OFDM symbol 2) and reference signals are | | 17 | 101840 | | transmitted through two transmit antennas. In this case, the | | 17 | 102928 | | number of REs (resource elements) that can be used for data | | 17
18 | 104016
104376 | 50 | transmission may be 120 in one unit RBP (resource block | | 18 | 105528 | | pair). | | 18 | 106680 | | For example, it may be assumed that a modulation scheme | | 18 | 107832 | | and a coding rate used by a BS are 64QAM and 0.6504 and the | | 18
18 | 108984
110136 | | number of allocated RBs is 10. A size of transport block that | | 19 | 111392 | 55 | can be transmitted through allocated 10 RBs is 4658 bits. This | | 19 | 112608 | | is a value in the range between 4608 bits and 4672 bits, i.e., | | 19
19 | 113824
115040 | | the transport block size defined in Table 11 above. By defin- | | 19 | 116256 | | ing a rule for determining the size of transport block to any | | 20 | 117256 | | one of the defined two transport block sizes, the size of | | 20 | 118536 | 60 | transport block may be determined according to various modulation and code rates and allocated resource sizes. | | 20
20 | 119816
121096 | | | | 20 | 123336 | | In a case where a size of transport block that can be actually
transmitted is not equal to a supportable transport block size | | 21 | 124464 | | as described above, the size of transport block may be deter- | | 21 | 125808 | 65 | mined according to a specific rule. For example, according to | | 21
21 | 127152
129504 | 03 | the embodiment of the present invention, if the size of trans- | | 2.1 | 12750-7 | | port block is not equal to the supportable transport block size, | | | | | r ==================================== | 25 the size of transport block that can be actually transmitted may be determined by using any one of the following rules. - i) Method of determining a transport block size to a maximum supportable transport block size not exceeding an actually transmissible transport block size. - ii) Method of determining a transport block size to a minimum supportable transport block size exceeding an actually transmissible transport block size. - iii) Method of determining a transport block size to a supportable data block having a smallest difference with respect 10 to an actually transmissible data block size. Table 13 below shows an example of a case where the number of code blocks is in the range of 25 to 66 among transport blocks satisfying the aforementioned condition. It is shown in Table 13 that a size of transport block is defined variously according to a modulation scheme, a coding rate, and an allocated resource even if the same number of code blocks are present. A transport block defined in a case of using 256QAM as the modulation scheme is also included in Table 13. In Table 13, an uppermost end may indicate the number of code blocks, and a value included in a column mapped according to the number of code blocks may be a size of transport block defined variously according to a modulation and coding rate. According to the embodiment of the present invention, one of the sizes of transport blocks defined in the following table may be used when determining the size of 26 TABLE 13 transport block. | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | |------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | 76176 | 79224 | 82272 | 85320 | 88368 | 91416 | 94464 | 97512 | 100560 | | 77776 | 80888 | 84000 | 87112 | 90224 | 93336 | 96448 | 99560 | 102672 | | 79376 | 82552 | 85728 | 88904 | 92080 | 95256 | 98432 | 101608 | 104784 | | 80976 | 84216 | 87456 | 90696 | 93936 | 97176 | 100416 | 103656 | 106896 | | 82576 | 85880 | 89184 | 92488 | 95792 | 99096 | 102400 | 105704 | 109008 | | 84176 | 87544 | 90912 | 94280 | 97648 | 101016 | 104384 | 107752 | 111120 | | 85776 | 89208 | 92640 | 96072 | 99504 | 102936 | 106368 | 109800 | 113232 | | 87376 | 90872 | 94368 | 97864 | 101360 | 104856 | 108352 | 111848 | 115344 | | 88976 | 92536 | 96096 | 99656 | 103216 | 106776 | 110336 | 113896 | 117456 | | 90576 | 94200 | 97824 | 101448 | 105072 | 108696 | 112320 | 115944 | 119568 | | 92176 | 95864 | 99552 | 103240 | 106928 | 110616 | 114304 | 117992 | 121680 | | 93776 | 97528 | 101280 | 105032 | 108784 | 112536 | 116288 | 120040 | 123792 | | 95376 | 99192 | 103008 | 106824 | 110640 | 114456 | 118272 | 122088 | 125904 | | 96976 | 100856 | 104736 | 108616 | 112496 | 116376 | 120256 | 124136 | 128016 | | 98576 | 102520 | 106464 | 110408 | 114352 | 118296 | 122240 | 126184 | 130128 | | 100176 | 104184 | 108192 | 112200 | 116208 | 120216 | 124224 | 128232 | 132240 | | 101776 | 105848 | 109920 | 113992 | 118064 | 122136 | 126208 | 130280 | 134352 | | 103376 | 107512 | 111648 | 115784 | 119920 | 124056 | 128192 | 132328 | 136464 | | 104976 | 109176 | 113376 | 117576 | 121776 | 125976 | 130176 | 134376 | 138576 | | 106576 | 110840 | 115104 | 119368 | 123632 | 127896 | 132160 | 136424 | 140688 | | 108176 | 112504 | 116832 | 121160 | 125488 | 129816 | 134144 | 138472 | 142800 | | 109776 | 114168 | 118560 | 122952 | 127344 | 131736 | 136128 | 140520 | 144912 | | 111376 | 115832 | 120288 | 124744 | 129200 | 133656 | 138112 | 142568 | 147024 | | 112976
114576 | 117496 | 122016 | 126536 | 131056 | 135576 | 140096 | 144616 | 149136 | | | 119160
120824 | 123744 | 128328
130120 | 132912
134768 | 137496
139416 | 142080
144064 | 146664
148712 | 151248
153360 | | 116176
117776 | 120824 | 125472
127200 | 130120 | 136624 | 141336 | 144004 | 150760 | 155472 | | 119376 | 124152 | 127200 | 131912 | 138480 | 143256 | 148032 | 152808 | 157584 | | 120976 | 125816 | 130656 | 135496 | 140336 | 145176 | 150016 | 154856 | 157564 | | 122576 | 127480 | 132384 | 137288 | 142192 | 147096 | 152000 | 156904 | 161808 | | 124176 | 129144 | 134112 | 139080 | 144048 | 149016 | 153984 | 158952 | 163920 | | 125776 | 130808 | 135840 | 140872 | 145904 | 150936 | 155968 | 161000 | 166032 | | 127376 | 132472 | 137568 | 142664 | 147760 | 152856 | 157952 | 163048 | 168144 | | 128976 | 134136 | 139296 | 144456 | 149616 | 154776 | 159936 | 165096 | 170256 | | 130576 | 135800 | 141024 | 146248 | 151472 | 156696 | 161920 | 167144 | 172368 | | 132176 | 137464 | 142752 | 148040 | 153328 | 158616 | 163904 | 169192 | 174480 | | 133776 | 139128 | 144480 | 149832 | 155184 | 160536 | 165888 | 171240 | 176592 | | 135376 | 140792 | 146208 | 151624 | 157040 | 162456 | 167872 | 173288 | 178704 | | 136976 | 142456 | 147936 | 153416 | 158896 | 164376 | 169856 | 175336 | 180816 | | 138576 | 144120 | 149664 | 155208 | 160752 | 166296 | 171840 | 177384 | 182928 | | 140176 | 145784 | 151392 | 157000 | 162608 | 168216 | 173824 | 179432 | 185040 | | 141776 | 147448 | 153120 | 158792 | 164464 | 170136 | 175808 | 181480 | 187152 | | 143376 | 149112 | 154848 | 160584 | 166320 | 172056 | 177792 | 183528 | 189264 | | 144976 | 150776 | 156576 | 162376
| 168176 | 173976 | 179776 | 185576 | 191376 | | 146576 | 152440 | 158304 | 164168 | 170032 | 175896 | 181760 | 187624 | 193488 | | 148176 | 154104 | 160032 | 165960 | 171888 | 177816 | 183744 | 189672 | 195600 | | 149776 | 155768 | 161760 | 167752 | 173744 | 179736 | 185728 | 191720 | 197712 | | 151376 | 157432 | 163488 | 169544 | 175600 | 181656 | 187712 | 193768 | 199824 | | 152976 | 159096 | 165216 | 171336 | 177456 | 183576 | 189696 | 195816 | 201936 | | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | | 103608 | 106656 | 109704 | 112752 | 115800 | 118848 | 121896 | 124944 | 127992 | | 105784 | 108896 | 112008 | 115120 | 118232 | 121344 | 124456 | 127568 | 130680 | | 107960 | 111136 | 114312 | 117488 | 120664 | 123840 | 127016 | 130192 | 133368 | | 110136 | 113376 | 116616 | 119856 | 123096 | 126336 | 129576 | 132816 | 136056 | | 112312 | 115616 | 118920 | 122224 | 125528 | 128832 | 132136 | 135440 | 138744 | | 114488 | 117856 | 121224 | 124592 | 127960 | 131328 | 134696 | 138064 | 141432 | | 116664 | 120096 | 123528 | 126960 | 130392 | 133824 | 137256 | 140688 | 144120 | | 118840 | 122336 | 125832 | 129328 | 132824 | 136320 | 139816 | 143312 | 146808 | | | | | | | | | | | TABLE 13-continued | | | | TABL | E 13-con | tinued | | | | |--|--|--|---|--|--|---|---|---| | 121016 | 124576 | 128136 | 131696 | 135256 | 138816 | 142376 | 145936 | 149496 | | 123192 | 126816 | 130440 | 134064 | 137688 | 141312 | 144936 | 148560 | 152184 | | 125368 | 129056 | 132744 | 136432 | 140120 | 143808 | 147496 | 151184 | 154872 | | 127544 | 131296 | 135048 | 138800 | 142552 | 146304 | 150056 | 153808 | 157560 | | 129720 | 133536 | 137352 | 141168 | 144984 | 148800 | 152616 | 156432 | 160248 | | 131896 | 135776 | 139656 | 143536 | 147416 | 151296 | 155176 | 159056 | 162936 | | 134072 | 138016 | 141960 | 145904 | 149848 | 153792 | 157736 | 161680 | 165624 | | 136248 | 140256 | 144264 | 148272 | 152280 | 156288 | 160296 | 164304 | 168312 | | 138424 | 142496 | 146568 | 150640 | 154712 | 158784 | 162856 | 166928 | 171000 | | 140600 | 144736 | 148872 | 153008 | 157144 | 161280 | 165416 | 169552 | 173688 | | 142776 | 146976 | 151176 | 155376 | 159576 | 163776 | 167976 | 172176 | 176376 | | 144952 | 149216 | 153480 | 157744 | 162008 | 166272 | 170536 | 174800 | 179064 | | 147128 | 151456 | 155784 | 160112 | 164440 | 168768 | 173096 | 177424 | 181752 | | 149304 | 153696 | 158088 | 162480 | 166872 | 171264 | 175656 | 180048 | 184440 | | 151480 | 155936 | 160392 | 164848 | 169304 | 173760 | 178216 | 182672 | 187128 | | 153656 | 158176 | 162696 | 167216 | 171736 | 176256 | 180776 | 185296 | 189816 | | 155832 | 160416 | 165000 | 169584 | 174168 | 178752 | 183336 | 187920 | 192504 | | 158008 | 162656 | 167304 | 171952 | 176600 | 181248 | 185896 | 190544 | 195192 | | 160184 | 164896 | 169608 | 174320 | 179032 | 183744 | 188456 | 193168 | 197880 | | 162360 | 167136 | 171912 | 176688 | 181464 | 186240 | 191016 | 195792 | 200568 | | 164536 | 169376 | 174216 | 179056 | 183896 | 188736 | 193576 | 198416 | 203256 | | 166712 | 171616 | 176520 | 181424 | 186328 | 191232 | 196136 | 201040 | 205944 | | 168888 | 173856 | 178824 | 183792 | 188760 | 193728 | 198696 | 203664 | 208632 | | 171064 | 176096 | 181128 | 186160 | 191192 | 196224 | 201256 | 206288 | 211320 | | 173240 | 178336 | 183432 | 188528 | 193624 | 198720 | 203816 | 208912 | 214008 | | 175416 | 180576 | 185736 | 190896 | 196056 | 201216 | 206376 | 211536 | 216696 | | 177592 | 182816 | 188040 | 193264 | 198488 | 201210 | 208936 | 214160 | 219384 | | 179768 | 185056 | 190344 | 195632 | 200920 | 206208 | 211496 | 214100 | 222072 | | 181944 | 187296 | 192648 | 198000 | 203352 | 208704 | 214056 | 219408 | 224760 | | 184120 | 189536 | 194952 | 200368 | 205784 | 211200 | 216616 | 222032 | 227448 | | 186296 | 191776 | 197256 | 202736 | 208216 | 213696 | 219176 | 224656 | 230136 | | 188472 | 194016 | 199560 | 205104 | 210648 | 216192 | 221736 | 227280 | 232824 | | 190648 | 196256 | 201864 | 207472 | 213080 | 218688 | 224296 | 229904 | 235512 | | 192824 | 198496 | 204168 | 209840 | 215512 | 221184 | 226856 | 232528 | 238200 | | 195000 | 200736 | 206472 | 212208 | 217944 | 223680 | 229416 | 235152 | 240888 | | 197176 | 202976 | 208776 | 214576 | 220376 | 226176 | 231976 | 237776 | 243576 | | 199352 | 205216 | 211080 | 216944 | 222808 | 228672 | 234536 | 240400 | 246264 | | 201528 | 207456 | 213384 | 219312 | 225240 | 231168 | 237096 | 243024 | 248952 | | 203704 | 209696 | 215688 | 221680 | 227672 | 233664 | 239656 | 245648 | 251640 | | | | | | | | | | | | 205880 | 211936 | 217992 | 224048 | 230104 | 236160 | 242216 | 248272 | 254328 | | 205880
208056 | 211936
214176 | 217992
220296 | 224048
226416 | 230104
232536 | 236160
238656 | 242216
244776 | 248272
250896 | 254328
257016 | | | | | 224048
226416 | 230104
232536 | | | | 254328
257016 | | | | | | | | | | | | 208056 | 214176
44 | 220296
45 | 226416
46 | 232536 | 238656
48 | 244776
49 | 250896
50 | 257016 | | 208056
43
131040 | 214176
44
134088 | 220296
45
137136 | 226416
46
140184 | 232536
47
143232 | 238656
48
146280 | 244776
49
149328 | 250896
50
152376 | 257016
51
155424 | | 208056
43
131040
133792 | 214176
44
134088
136904 | 220296
45
137136
140016 | 226416
46
140184
143128 | 232536
47
143232
146240 | 238656
48
146280
149352 | 244776
49
149328
152464 | 250896
50
152376
155576 | 257016
51
155424
158688 | | 208056
43
131040
133792
136544 | 214176
44
134088
136904
139720 | 220296
45
137136
140016
142896 | 226416
46
140184
143128
146072 | 232536
47
143232
146240
149248 | 238656
48
146280
149352
152424 | 244776
49
149328
152464
155600 | 250896
50
152376
155576
158776 | 257016
51
155424
158688
161952 | | 208056
43
131040
133792
136544
139296 | 214176
44
134088
136904
139720
142536 | 220296
45
137136
140016
142896
145776 | 226416
46
140184
143128
146072
149016 | 232536
47
143232
146240
149248
152256 | 238656
48
146280
149352
152424
155496 | 244776
49
149328
152464
155600
158736 | 250896
50
152376
155576
158776
161976 | 257016
51
155424
158688
161952
165216 | | 208056
43
131040
133792
136544
139296
142048 | 214176
44
134088
136904
139720
142536
145352 | 220296
45
137136
140016
142896
145776
148656 | 226416
46
140184
143128
146072
149016
151960 | 232536
47
143232
146240
149248
152256
155264 | 238656
48
146280
149352
152424
155496
158568 | 244776
49
149328
152464
155600
158736
161872 | 250896
50
152376
155576
158776
161976
165176 | 257016
51
155424
158688
161952
165216
168480 | | 208056
43
131040
133792
136544
139296
142048
144800 | 214176
44
134088
136904
139720
142536
145352
148168 |
220296
45
137136
140016
142896
145776
148656
151536 | 226416
46
140184
143128
146072
149016
151960
154904 | 232536
47
143232
146240
149248
152256
155264
158272 | 238656
48
146280
149352
152424
155496
158568
161640 | 244776
49
149328
152464
155600
158736
161872
165008 | 250896
50
152376
155576
158776
161976
165176
168376 | 257016
51
155424
158688
161952
165216
168480
171744 | | 208056
43
131040
133792
136544
139296
142048
144800
147552 | 214176
44
134088
136904
139720
142536
145352
148168
150984 | 220296
45
137136
140016
142896
145776
148656
151536
154416 | 226416
46
140184
143128
146072
149016
151960
154904
157848 | 232536
47
143232
146240
149248
152256
155264
158272
161280 | 238656
48
146280
149352
152424
155496
158568
161640
164712 | 244776
49
149328
152464
155600
158736
161872
165008
168144 | 250896
50
152376
155576
158776
161976
165176
168376
171576 | 257016
51
155424
158688
161952
165216
168480
171744
175008 | | 208056
43
131040
133792
136544
139296
142048
144800
147552
150304 | 214176
44
134088
136904
139720
142536
145352
148168
150984
153800 | 220296
45
137136
140016
142896
145776
148656
151536
154416
157296 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288 | 238656
48
146280
149352
152424
155496
158568
161640
164712
167784 | 244776
49
149328
152464
155600
158736
161872
165008
168144
171280 | 250896
50
152376
155576
158776
161976
165176
168376
171576
174776 | 257016
51
155424
158688
161952
165216
168480
171744
175008
178272 | | 208056
43
131040
133792
136544
139296
142048
144800
147552
150304
153056 | 214176
44
134088
136904
139720
142536
145352
148168
150984
153800
156616 | 220296
45
137136
140016
142896
145776
148656
151536
154416
157296
160176 | 226416
46
140184
143128
146072
149016
151960
154904
157848
160792
163736 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296 | 238656
48
146280
149352
152424
155496
158568
161640
164712
167784
170856 | 244776
49
149328
152464
155600
158736
161872
165008
168144
171280
174416 | 250896
50
152376
155576
158776
161976
165176
168376
171576
174776
177976 | 257016
51
155424
158688
161952
165216
168480
171744
175008
178272
181536 | | 208056
43
131040
133792
136544
139296
142048
144800
147552
150304
153056
155808 | 214176
44
134088
136904
139720
142536
145352
148168
150984
153800
156616
159432 | 220296
45
137136
140016
142896
145776
148656
151536
154416
157296
160176
163056 | 226416
46
140184
143128
146072
149016
151960
154904
157848
160792
163736
166680 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304 | 238656
48
146280
149352
152424
155496
168568
161640
164712
167784
170856
173928 | 244776
49
149328
152464
155600
158736
161872
165008
168144
171280
174416
177552 | 250896
50
152376
155576
158776
161976
165176
168376
171576
174776
174776
181176 | 257016
51
155424
158688
161952
165216
168480
171744
175008
178272
181536
184800 | | 208056
43
131040
133792
136544
139296
142048
144800
147552
150304
153056
155808
158560 | 214176
44
134088
136904
139720
142536
145352
148168
150984
153800
156616
159432
162248 | 220296
45
137136
140016
142896
145776
148656
151536
154416
157296
160176
163056
165936 | 226416
46
140184
143128
146072
149016
151960
154904
157848
160792
163736
166680
169624 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312 | 238656
48
146280
149352
152424
155496
158568
161640
164712
167784
170856
173928
177000 | 244776
49
149328
152464
155600
158736
161872
165008
168144
171280
174416
177552
180688 | 250896
50
152376
155576
158776
16976
165176
168376
171576
174776
174776
184376 | 257016
51
155424
158688
161952
165216
168480
171744
175008
178272
181536
184800
188064 | | 208056
43
131040
133792
136544
139296
142048
144800
147552
150304
153056
155808
158560
161312 | 214176
44
134088
136904
139720
142536
145352
148168
150984
153800
156616
159432
162248
165064 | 220296
45
137136
140016
142896
145776
148656
151536
154416
157296
160176
163056
165936
168816 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 163736 166680 169624 172568 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312
176320 | 238656
48
146280
149352
152424
155496
158568
161640
164712
167784
170856
173928
177000
180072 | 244776
49
149328
152464
155600
158736
161872
165008
168144
171280
174416
177552
180688
183824 | 250896
50
152376
155576
158776
16976
165176
168376
171576
174776
174776
181176
184376
187576 | 257016
51
155424
158688
161952
165216
168480
171744
175008
178272
181536
184800
188064
191328 | | 208056
43
131040
133792
136544
139296
142048
144800
147552
150304
153056
155808
158560
161312
164064 | 214176
44
134088
136904
139720
142536
145352
148168
150984
153800
156616
159432
162248
165064
167880 | 220296
45
137136
140016
142896
145776
148656
151536
157296
160176
163056
165936
168816
171696 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 163736 166680 169624 172568 175512 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312
176320
179328 | 238656
48
146280
149352
152424
155496
158568
161640
164712
167784
170856
173928
177000
180072
183144 | 244776
49
149328
152464
155600
158736
161872
165008
168144
171280
174416
177552
180688
183824
186960 | 250896
50
152376
155576
158776
161976
165176
163376
171576
174776
177976
184176
184376
184376
187576
190776 | 257016
51
155424
158688
161952
165216
168480
171744
175008
178272
181536
184800
188064
191328
194592 | | 208056
43
131040
133792
136544
139296
142048
144800
147552
150304
153056
155808
158560
161312
164064
166816 | 214176
44
134088
136904
139720
142536
145352
148168
150984
153800
156616
159432
162248
165064
167880
170696 | 220296
45
137136
140016
142896
145776
148656
151536
154416
157296
160176
163056
165936
168816
171696
174576 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 163736 166680 169624 172568 175512 178456 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312
176320
179328
182336 | 238656
48
146280
149352
152424
155496
16860
164712
167784
170856
173928
177000
180072
183144
186216 | 244776
49
149328
152464
155600
158736
161872
165008
168144
171280
174416
177552
180688
183824
186960
190096 | 250896
50
152376
155576
155576
161976
165176
168376
171576
174776
174776
184376
18776
184376
190776
193976 | 257016
51
155424
158688
161952
165216
168480
171744
175008
178272
181536
184800
188064
191328
194592
197856 | | 208056
43
131040
133792
136544
139296
142048
144800
147552
150304
153056
155808
158560
161312
164064
166816
169568 | 214176
44
134088
136904
139720
142536
145352
148168
150984
153800
156616
159432
162248
165064
167880
170696
173512 | 220296
45
137136
140016
142896
145776
148656
151536
154416
157296
160176
163056
165936
168816
171696
174576
177456 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 163736 166680 169624 172568 175512 178456 181400 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312
176320
179328
182336
185344 | 238656
48
146280
149352
152424
155496
168568
161640
164712
167784
170856
173928
177000
180072
183144
186216
189288 |
244776
49
149328
152464
155600
158736
161872
165008
168144
171280
174416
177552
180688
183824
186960
190096
193232 | 250896
50
152376
155576
15576
158776
161976
165176
171576
171576
1717976
181176
184376
184376
187576
190776
193976
197176 | 257016
51
155424
158688
161952
165216
168480
171744
175008
178272
181536
184800
188064
191328
194592
197856
201120 | | 208056
43
131040
133792
136544
139296
142048
144800
147552
150304
153056
155808
161312
164064
166816
169568
172320 | 214176
44
134088
136904
139720
142536
145352
148168
150984
153800
156616
159432
162248
165064
167880
170696
173512
176328 | 220296
45
137136
140016
142896
145776
148656
151536
154416
157296
160176
163056
165936
168816
171696
174576
177456
180336 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 163736 166680 169624 172568 175512 178456 181400 184344 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312
176320
179328
182336
185344
188352 | 238656
48
146280
149352
152424
155496
168712
167784
170856
173928
177000
180072
183144
186216
189288
192360 | 244776
49
149328
152464
155600
158736
161872
165008
168144
171280
174416
177552
180688
183824
186960
190096
193232
196368 | 250896
50
152376
155576
158776
161976
165176
174776
174776
184376
187576
190776
193976
197176
200376 | 257016
51
155424
158688
161952
165216
168480
171744
175008
178272
181536
184800
188064
191328
194592
197856
201120
204384 | | 208056
43
131040
133792
136544
139296
142048
144800
147552
150304
153056
155808
161312
164064
166816
169568
172320
175072 | 214176 44 134088 136904 139720 142536 145352 148168 150984 153800 156616 159432 162248 165064 167880 170696 173512 176328 179144 | 220296
45
137136
140016
142896
145776
148656
151536
154416
157296
160176
163056
168816
171696
174576
177456
180336
183216 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 163736 166680 169624 172568 175512 178456 181400 184344 187288 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312
176320
179328
182336
185344
188352
191360 | 238656
48
146280
149352
152424
155496
158568
161640
164712
167784
170856
173928
177000
180072
183144
186216
189288
192360
195432 | 244776 49 149328 152464 155600 158736 161872 165008 168144 171280 174416 177552 180688 183824 186960 190096 193232 196368 199504 | 250896
50
152376
155576
158776
161976
165176
16176
171576
174776
174776
181176
184376
187576
190776
193976
197176
200376
203576 | 257016
51
155424
158688
161952
165216
168480
171744
175008
178272
181536
184800
188064
191328
194592
197856
201120
204384
207648 | | 208056
43
131040
133792
136544
139296
142048
144800
147552
150304
153056
155808
158860
161312
164064
166816
169568
172320
175072
177824 | 214176 44 134088 136904 139720 142536 145352 148168 150984 153800 156616 159432 162248 165064 167880 170696 173512 176328 179144 181960 | 220296 45 137136 140016 14286 145776 148656 151536 154416 157296 160176 163056 165936 168816 171696 174576 177456 180336 183216 186096 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 163736 166680 169624 172568 175512 178456 181400 184344 187288 190232 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312
176320
179328
182336
185344
188352
191360
194368 | 238656
48
146280
149352
152424
155496
158568
161640
164712
167784
170856
173928
177000
180072
183144
186216
189288
192360
195432
198504 | 244776 49 149328 152464 155600 158736 161872 165008 168144 171280 174416 177552 180688 183824 186960 190096 193232 196368 199504 202640 | 250896
50
152376
155576
155576
161976
165176
168376
171576
174776
181176
184376
18776
190776
19376
19376
203576
203576
206776 | 257016
51
155424
158688
161952
165216
168480
171744
175008
178272
181536
184800
188064
191328
194592
197856
201120
204384
207648
210912 | | 208056
43
131040
133792
136544
139296
142048
144800
147552
150304
153056
155808
158560
161312
164064
166816
169568
172320
175072
177824
180576 | 214176 44 134088 136904 139720 142536 145352 148168 150984 153800 156616 159432 162248 165064 167880 170696 173512 176328 179144 181960 184776 | 220296 45 137136 140016 142896 145776 148656 151536 154416 157296 160176 163056 165836 171696 171696 174576 177456 180336 183216 186096 188976 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 163736 166680 169624 172568 175512 178456 181400 184344 187288 190232 193176 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312
176320
179328
182336
185344
188352
191360
194368
197376 | 238656
48
146280
149352
152424
155496
164712
167784
170856
173928
177000
180072
183144
186216
189288
192360
195432
198504
201576 | 244776 49 149328 152464 155600 158736 161872 165008 168144 171280 174416 177552 180688 183824 186960 190096 193232 196368 199504 202640 205776 | 250896
50
152376
155576
155576
161976
161976
165176
171576
174776
174776
184376
184376
184376
190776
193976
190376
200376
200376
206776
209976 | 257016
51
155424
158688
161952
165216
168480
171744
175008
178272
181536
184800
188064
191328
194592
197856
201120
204384
207648
210912
214176 | | 208056
43
131040
133792
136544
139296
142048
144800
147552
150304
153056
155808
158560
161312
164064
166816
169568
172320
175072
177824
180576
183328 | 214176 44 134088 136904 139720 142536 145352 148168 150984 153800 156616 159432 162248 165064 173512 176328 179144 181960 184776 187592 | 220296 45 137136 140016 142896 145776 148656 151536 154416 157296 160176 163056 165936 168816 171696 174576 180336 183216 18096 188976 191856 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 163736 166680 169624 172568 175512 178456 181400 184344 187288 190232 193176 196120 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312
176320
179328
182336
185344
188352
191360
194368
197376
200384 | 238656
48
146280
149352
152424
155496
168568
161640
164712
167784
170856
173928
177000
180072
183144
186216
189288
192360
195432
198504
201576
204648 | 244776 49 149328 152464 155600 158736 161872 165008 168144 171280 174416 177552 180688 183824 186960 190096 193232 196368 199504 202640 205776 208912 | 250896
50
152376
155576
158776
161976
165176
171576
171576
174776
184376
184376
184376
190776
193976
193976
200376
200376
200376
200976
213176 | 257016
51
155424
158688
161952
165216
168480
171744
175008
178272
181536
184800
188064
191328
194592
197856
201120
204384
207648
210912
214176
217440 | | 208056
43
131040
133792
136544
139296
142048
144800
147552
150304
153056
155808
158560
161312
164064
166816
169568
172320
175072
177824
180576
183328
186080 | 214176 44 134088 136904 139720 142536 145352 148168 150984 153800 156616 159432 162248 165064 167880 170696 173512 176328 179144 181960 184776 187592 190408 | 220296
45
137136
140016
142896
145776
148656
151536
154416
157296
160176
163056
165936
168816
171696
174576
177456
180336
183216
186096
188976
191856
194736 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 163736 166680 169624 172568 175512 178456 181400 184344 187288 190232 193176 196120 199064 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312
176320
179328
182336
185344
188352
191360
194368
197376
200384
203392 | 238656
48
146280
149352
152424
155496
168712
167784
170856
173928
177000
180072
183144
186216
189288
192360
195432
198504
201576
204648
207720 | 244776 49 149328 152464 155600 158736 161872 165008 168144 171280 174416 177552 180688 183824 186960 190096 193232 196368 199504 202640 205776 208912 212048 | 250896
50
152376
155576
158776
168776
165176
165176
174776
174776
181176
184376
187576
190776
193776
203576
203576
206776
209976
213176
213176
216376 |
257016
51
155424
158688
161952
165216
168480
171744
175008
178272
181536
184800
188064
191328
194592
197856
201120
204384
207648
210912
214176
217440
220704 | | 208056
43
131040
133792
136544
139296
142048
144800
147552
150304
153056
155808
158560
161312
164064
166816
169568
172320
175072
177824
180576
183328
186080
188832 | 214176 44 134088 136904 139720 142536 145352 148168 150984 153800 156616 159432 162248 165064 167880 170696 173512 176328 179144 181960 184776 187592 190408 193224 | 220296 45 137136 140016 14286 145776 148656 151536 154416 157296 160176 163056 165936 168816 1714576 177456 180336 183216 186096 188976 191856 194736 197616 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 163736 166680 169624 172568 175512 178456 181400 184344 187288 190232 193176 196120 199064 202008 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312
176320
179328
182336
185344
188352
191360
194368
197376
200384
203892
206400 | 238656 48 146280 149352 152424 155496 158568 161640 164712 167784 170856 173928 177000 180072 183144 186216 189288 192360 195432 198504 201576 204648 207720 210792 | 244776 49 149328 152464 155600 158736 161872 165008 168144 171280 174416 177552 180688 183824 186960 190096 193232 196368 199504 202640 205776 208912 212048 215184 | 250896 50 152376 155576 155576 161976 165176 168376 171576 174776 181176 184376 193976 193976 193776 203576 203576 209976 213176 21376 21376 21376 21376 21376 21376 | 257016
51
155424
158688
161952
165216
168480
171744
175008
178272
181536
184800
188064
191328
194592
197856
201120
204384
207648
210912
214176
217440
220704
223968 | | 208056
43
131040
133792
136544
139296
142048
144800
147552
1503056
155808
158560
161312
164064
166816
169568
172320
175072
177824
180576
183328
186080
188832
191584 | 214176 44 134088 136904 139720 142536 145352 148168 150984 153800 156616 159432 162248 165064 167880 170696 173512 176328 179144 181960 184776 187592 190408 193224 196040 | 220296 45 137136 140016 142896 145776 148656 151536 154416 157296 160176 163056 165936 174576 177456 180336 183216 188096 188976 191856 194736 197616 200496 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 163736 166680 169624 172568 175512 178456 181400 184344 187288 190232 193176 196120 199064 202008 204952 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312
176320
179328
182336
185344
188352
191360
194368
197376
200384
203392
206400
209408 | 238656 48 146280 149352 152424 155496 158568 161640 164712 167784 170806 180072 183144 186216 189288 192360 195432 198504 201576 204648 207720 210792 213864 | 244776 49 149328 152464 155600 158736 161872 165008 168144 171280 174416 177552 180688 183824 186960 190096 193232 196368 199504 205776 208912 212048 215184 218320 | 250896
50
152376
155576
155576
161976
161976
168376
171576
174776
181176
184376
187576
190776
193976
190376
200376
200376
203576
20976
213176
216376
219576
222776 | 257016
51
155424
158688
161952
165216
168480
171744
175008
178272
181536
184800
188064
191328
194592
197856
201120
204384
207648
210704
2214176
217440
220704
223968
227232 | | 208056
43
131040
133792
136544
139296
142048
144800
147552
150304
153056
155808
158560
161312
164064
166816
169568
172320
175072
177824
180576
183328
186080
18832
191584
194336 | 214176 44 134088 136904 139720 142536 145352 148168 150984 153800 156616 159432 162248 165064 167880 170696 173512 176328 179144 181960 184776 187592 190408 193224 196040 198856 | 220296 45 137136 140016 142896 145776 148656 151536 154416 157296 160176 163056 165936 168816 171696 174576 180336 183216 180696 188976 191856 194736 194736 200496 203376 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 163736 166680 169624 172568 175512 178456 181400 184344 187288 190232 193176 196120 199064 202008 204952 207896 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312
176320
179328
182336
185344
188352
191360
194368
197376
200384
203392
206400
209408
212416 | 238656 48 146280 149352 152424 155496 168568 161640 164712 167784 170856 173928 177000 180072 183144 186216 189288 192360 195432 198504 201576 204648 207720 210792 213864 216936 | 244776 49 149328 152464 155600 158736 161872 165008 168144 171280 174416 177552 180688 183824 186960 190096 193232 196368 199504 202640 205776 208912 212048 215184 218320 221456 | 250896
50
152376
155576
155576
158776
161976
165176
171576
171576
1717976
181176
184376
187576
190376
200376
200376
200376
201376
201376
21976
21976
21976
222776
225976 | 257016
51
155424
158688
161952
165216
168480
171744
175008
178272
181536
184800
188064
191328
194592
197856
201120
204384
207648
210912
214176
217440
223764
223968
227232
230496 | | 208056
43
131040
133792
136544
139296
142048
144800
147552
150304
153056
151808
158560
161312
164064
166816
169568
172320
175072
177824
180576
183328
186080
188832
191584
194336
197088 | 214176 44 134088 136904 139720 142536 145352 148168 150984 153800 156616 159432 162248 165064 167880 170696 173512 176328 179144 181960 184776 187592 190408 193224 196040 198856 201672 | 220296 45 137136 140016 142896 145776 148656 151536 154416 157296 160176 163056 165936 168816 171696 174576 180336 183216 186096 188976 191856 194736 191856 194736 203376 206256 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 163736 166680 169624 172568 175512 178456 181400 184344 187288 190232 193176 196120 199064 202008 204952 207896 210840 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312
176320
179328
182336
185344
188352
191360
194368
197376
200384
203392
206400
209408
212416
215424 | 238656 48 146280 149352 152424 155496 158568 161640 164712 167784 170856 173928 177000 180072 183144 186216 189288 192360 195432 198504 201576 204648 207720 213864 216936 220008 | 244776 49 149328 152464 155600 158736 161872 165008 168144 171280 174416 177552 180688 183824 186960 190096 193232 196368 199504 202640 205776 208912 212048 215184 218320 221456 224592 | 250896
50
152376
155576
158776
168776
16876
171576
174776
174776
181176
184376
187576
193976
193776
203576
203576
206776
209976
213176
216376
215776
225976
225976
229176 | 257016
51
155424
158688
161952
165216
168480
171744
175008
178272
181536
184800
188064
191328
194592
197856
201120
204384
207648
210912
214176
217440
220704
223968
227232
230496
233760 | | 208056
43
131040
133792
136544
139296
142048
144800
147552
150304
153056
155808
158560
161312
164064
166816
169568
172320
175072
177824
180576
183328
186080
188832
191584
194336
197088
199840 | 214176 44 134088 136904 139720 142536 145352 148168 150984 153800 156616 159432 162248 165064 167880 170696 173512 176328 179144 181960 184776 187592 190408 193224 196040 198856 201672 204488 | 220296 45 137136 140016 142896 145776 148656 151536 154416 157296 160176 163056 165936 168816 171696 174576 180336 183216 186096 188976 191856 194736 197616 200496 203376 206256 209136 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 163736 166680 169624 172568 175512 178456 181400 184344 187288 190232 193176 196120 199064 202008 204952 207896 210840 213784 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312
176320
179328
182336
185344
188352
191360
194368
197376
200384
203392
206400
209408
212416
215424
218432 | 238656 48 146280 149352 152424 155496 158568 161640 164712 167784 170856 173928 177000 180072 183144 186216 189288 192360 195432 198504 201576 204648 207720 210792 213864 216936 220008 223080 | 244776 49 149328 152464 155600 158736 161872 165008 168144 171280 174416 177552 180688 183824 186960 190996 193232 196368 199504 202640 205776 208912 212048 215184 218320 221456 224592 227728 | 250896
50
152376
155576
158776
168776
165176
165176
174776
174776
181176
184376
187576
190776
203576
203576
209776
213176
21576
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776
225776 | 257016
51
155424
158688
161952
165216
168480
171744
175008
178272
181536
184800
188064
191328
194592
197856
201120
204384
207648
210912
214176
217440
220704
223968
227232
230496
233760
237024 | |
208056
43
131040
133792
136544
139296
142048
144800
147552
150304
153056
151808
158560
161312
164064
166816
169568
172320
175072
177824
180576
183328
186080
188832
191584
194336
197088 | 214176 44 134088 136904 139720 142536 145352 148168 150984 153800 156616 159432 162248 165064 167880 170696 173512 176328 179144 181960 184776 187592 190408 193224 196040 198856 201672 204488 207304 | 220296 45 137136 140016 142896 145776 148656 151536 154416 157296 160176 163056 165936 174576 177456 180336 183216 188976 191856 194736 197616 200496 203376 206256 209136 212016 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 163736 166680 169624 172568 175512 178456 181400 184344 187288 190232 193176 196120 199064 20208 204952 207896 210840 213784 216728 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312
176320
179328
182336
185344
188352
191360
194368
197376
200384
20349
206400
209408
212416
215424
218432
221440 | 238656 48 146280 149352 152424 155496 158568 161640 164712 167784 170800 180072 183144 186216 189288 192360 195432 198504 201576 204648 207720 210792 213864 216936 220008 223080 226152 | 244776 49 149328 152464 155600 158736 161872 165008 168144 171280 174416 177552 180688 183824 186960 190096 193232 196368 199504 202640 205776 208912 212048 215184 218320 221456 224592 227728 230864 | 250896 50 152376 155576 155576 161976 161976 168376 171576 174776 181176 184376 190776 193976 190376 203576 203576 209976 213176 216376 225976 225976 232376 232376 232576 | 257016
51
155424
158688
16195216
168480
171744
175008
178272
181536
184800
188064
191328
194592
197856
201120
204384
207648
210912
214176
217440
220704
223968
227232
230496
233760
237024
240288 | | 208056
43
131040
133792
136544
139296
142048
144800
147552
150304
153056
155808
158560
161312
164064
166816
169568
172320
175072
177824
180576
183328
186080
188832
191584
194336
197088
19940
202592
205344 | 214176 44 134088 136904 139720 142536 145352 148168 150984 153800 156616 159432 162248 165064 167880 170696 173512 176328 179144 181960 184776 187592 190408 193224 196040 198856 201672 204488 207304 210120 | 220296 45 137136 140016 142896 145776 148656 151536 154416 157296 160176 163056 165836 171696 1714576 177456 180336 183216 186096 188976 191856 194736 194736 20496 203376 206256 209136 212016 214896 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 163736 166680 169624 172568 175512 178456 181400 184344 187288 190232 193176 196120 199064 202008 204952 207896 210840 213784 216728 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312
176320
179328
182336
185344
188352
191360
194368
197376
200384
203392
206400
209408
212416
215424
218432 | 238656 48 146280 149352 152424 155496 158568 161640 164712 167784 170856 173928 177000 180072 183144 186216 189288 192360 195432 198504 201576 204648 207720 210792 213864 216936 220008 223080 226152 229224 | 244776 49 149328 152464 155600 158736 161872 165008 168144 171280 174416 177552 180688 183824 186960 190996 193232 196368 199504 202640 205776 208912 212048 215184 218320 221456 224592 227728 | 250896 50 152376 155576 155576 155576 161976 165176 168376 171576 174776 18776 18776 190776 193976 197176 200376 20376 20376 219576 219576 225776 225976 225976 23376 23576 23576 | 257016
51
155424
158688
161952
165216
168480
171744
175008
178272
181536
184800
188064
191328
194592
197856
201120
204384
207648
210912
214176
217440
220704
223968
227232
230496
233760
237024 | | 208056
43
131040
133792
136544
139296
142048
144800
147552
150304
153056
155808
158560
161312
164064
166816
169568
172320
175072
177824
180576
183328
186080
188832
191584
194336
197088
199840
202592 | 214176 44 134088 136904 139720 142536 145352 148168 150984 153800 156616 159432 162248 165064 167880 170696 173512 176328 179144 181960 184776 187592 190408 193224 196040 198856 201672 204488 207304 | 220296 45 137136 140016 142896 145776 148656 151536 154416 157296 160176 163056 165936 174576 177456 180336 183216 188976 191856 194736 197616 200496 203376 206256 209136 212016 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 163736 166680 169624 172568 175512 178456 181400 184344 187288 190232 193176 196120 199064 20208 204952 207896 210840 213784 216728 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312
176320
179328
182336
185344
188352
191360
194368
197376
200384
203392
206400
209408
212416
215424
218432
221440
224448 | 238656 48 146280 149352 152424 155496 158568 161640 164712 167784 170800 180072 183144 186216 189288 192360 195432 198504 201576 204648 207720 210792 213864 216936 220008 223080 226152 | 244776 49 149328 152464 155600 158736 161872 165008 168144 171280 174416 177552 180688 183824 186960 190096 193232 196368 199504 202640 205776 208912 212048 215184 218320 221456 224592 227728 2308644 234000 | 250896 50 152376 155576 155576 161976 161976 168376 171576 174776 181176 184376 190776 193976 190376 203576 203576 209976 213176 216376 225976 225976 232376 232376 232576 | 257016
51
155424
158688
161952
165216
168480
171744
175008
178272
181536
184800
188064
191328
194592
197856
201120
204384
207648
210912
214176
217440
220704
223968
227232
230496
233760
237624
240288
243552 | | 208056
43
131040
133792
136544
139296
142048
144800
147552
150304
153056
155808
158560
161312
164064
166816
169568
172320
175072
177824
180576
183328
186080
188832
191584
194336
197088
199840
202592
205344
208096 | 214176 44 134088 136904 139720 142536 145352 148168 150984 153800 156616 159432 162248 165064 173512 176328 179144 181960 184776 187592 190408 193224 196040 198856 201672 204488 207304 210120 212936 | 220296 45 137136 140016 142896 145776 148656 151536 154416 157296 160176 163056 165936 168816 171696 174576 180336 183216 180336 183216 20496 203376 206256 209136 214896 217776 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 163736 166680 169624 172568 175512 178456 181400 184344 187288 190232 193176 196120 199064 20208 204952 207896 210840 213784 216728 219672 222616 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312
176320
179328
182336
185344
188352
191360
194368
197376
200384
203392
206400
209408
212416
215424
218432
221440
2224448
227456 | 238656 48 146280 149352 152424 155496 168568 161640 164712 167784 170856 173928 177000 180072 183144 186216 189288 192360 195432 198504 201576 204648 207720 210792 213864 2210792 213864 223080 223080 223080 223296 | 244776 49 149328 152464 155600 158736 161872 165008 168144 171280 174416 177552 180688 183824 186960 190096 193232 196368 199504 202640 205776 208912 212048 215184 215184 218320 221456 224592 227728 230864 234000 237136 | 250896
50
152376
155576
155576
158776
161976
165176
171576
171576
1717976
181176
184376
190776
193976
193976
203576
203576
203576
203576
213176
216376
21576
222776
222776
225976
229176
232376
232376
235576
238776
241976 | 257016
51
155424
158688
161952
165216
168480
171744
175008
178272
181536
184800
188064
191328
194592
197856
201120
204384
207648
210912
214176
217440
220704
223766
233760
233760
237024
240288
244552
246816 | | 208056
43
131040
133792
136544
139296
142048
144800
147552
150304
153556
161312
164064
166816
169568
172320
175072
177824
180576
183328
186080
188832
191584
194336
197088
199840
202592
205344
208096
210848 | 214176 44 134088 136904 139720 142536 145352 148168 150984 153800 156616 159432 162248 165064 167880 170696 173512 176328 179144 181960 184776 187592 190408 193224 196040 198856 201672 204488 207304 210120 212936 215752 | 220296 45 137136 140016 142896 145776 148656 151536 154416 157296 160176 163056 165936 174576 177456 180336 183216 188976 191856 194736 197616 200496 203376 206256 209136 212016 214896 217776 2206566 223536 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 163736 166680 169624 172568 175512 178456 181400 184344 187288 190232 193176 196120 199064 202008 204952 207896 210840 213784 216728 219672 222616 225560 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312
176320
179328
182336
185344
188352
191360
194368
197376
200384
203392
206400
209408
212416
215424
218432
221440
224448
227456
230464 | 238656 48 146280 149352 152424 155496 158568 161640 164712 167784 170856 173928 177000 180072 183144 186216 189288 192360 195432 198504 201576 204648 207720 210386 223080 226152 229224 233296 235368 | 244776 49 149328 152464 155600 158736 161872 165008 168144 171280 174416 177552 180688 183824 186960 190096 193232 196368 199504 202640 205776 208912 212048 215184 218320 221456 224592 227728 230864 234000 237136 240272 |
250896
50
152376
155576
158776
168776
16976
165176
174776
174776
181176
184376
187576
190776
203576
203576
204576
209976
213176
216376
225976
225976
225976
225976
235576
235576
235776
245776
245776
245176 | 257016
51
155424
158688
161952
165216
168480
171744
175008
178272
181536
184800
188064
191328
194592
197856
201120
204384
207648
210912
214176
217440
220704
223968
227232
230496
237024
240288
243552
246816
250080 | | 208056 43 131040 133792 136544 139296 142048 144800 147552 150304 153056 155808 158560 161312 164064 166816 169568 172320 175072 177824 180576 183328 186080 188832 191584 194336 197088 199840 202592 2053444 208096 210848 213600 | 214176 44 134088 136904 139720 142536 145352 148168 150984 153800 156616 159432 162248 165064 167880 170696 173512 176328 179144 181960 184776 187592 190408 193224 196040 198856 201672 204488 207304 210120 212936 215752 218568 | 220296 45 137136 140016 142896 145776 148656 151536 154416 157296 160176 163056 165936 168816 171696 174576 180336 183216 186096 188976 191856 194736 191856 194736 20496 203376 206256 209136 212016 214896 217776 220656 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 163736 166680 169624 172568 175512 178456 181400 184344 187288 190232 193176 196120 199064 202008 204952 207896 210840 213784 216728 219672 222616 225560 228504 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312
176320
179328
182336
185344
188352
191360
194368
197376
200384
20349
206400
209408
212416
215424
21440
224448
227456
230464
233472 | 238656 48 146280 149352 152424 155496 158568 161640 164712 167784 170856 173928 177000 180072 183144 186216 189288 192360 195432 198504 201576 204648 207720 213864 216936 220008 223080 226152 229224 232296 235368 238440 | 244776 49 149328 152464 155600 158736 161872 165008 168144 171280 174416 177552 180688 183824 186960 190096 193232 196368 199504 202640 205776 208912 212048 215184 218320 221456 224592 227728 230864 234000 237136 240272 243408 | 250896 50 152376 155576 155576 161976 161976 168376 171576 174776 181176 184376 190776 193976 190776 203576 203576 204976 213176 216376 225976 225976 225976 232376 23576 23576 23576 245176 245176 245176 245176 245176 | 257016
51
155424
158688
161952
165216
168480
171744
175008
178272
181536
184800
188064
191328
194592
197856
201120
204384
207648
210912
214176
217440
220704
223968
227232
230496
233760
237024
240288
243552
246816
250080
253344 | | 208056 43 131040 133792 136544 139296 142048 144800 147552 150304 153056 155808 158560 161312 164064 166816 169568 172320 175072 177824 180576 183328 186080 188832 191584 194336 197088 199840 202592 205344 208096 210848 213600 216352 | 214176 44 134088 136904 139720 142536 145352 148168 150984 153800 156616 159432 162248 165064 167880 170696 173512 176328 179144 181960 184776 187592 190408 193224 196040 198856 201672 204488 207304 210120 212936 215752 218568 221384 | 220296 45 137136 140016 142896 145776 148656 151536 154416 157296 160176 163056 165936 168816 171696 174576 177456 180336 183216 184976 191856 194736 197616 200496 203376 206256 209136 212016 214896 217776 220656 223536 226416 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 163736 166680 169624 172568 175512 178456 181400 184344 187288 190232 193176 196120 199064 20208 204952 207896 210840 213784 216728 219672 222616 225560 228504 231448 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312
176320
179328
182336
185344
188352
191360
194368
197376
200384
203492
206400
209408
212416
215424
218432
221440
224448
227456
230464
233472
236480 | 238656 48 146280 149352 152424 155496 158568 161640 164712 167784 170806 180072 183144 186216 189288 192360 195432 198504 201576 204648 207720 213864 216936 220008 223080 223080 223296 235368 238440 241512 | 244776 49 149328 152464 155600 158736 161872 165008 168144 171280 174416 177552 180688 183824 186960 190096 193232 196368 199504 202640 205776 208912 212048 215184 218320 221456 224592 2277728 230864 234000 237136 240272 243408 246544 | 250896 50 152376 155576 155576 155576 161976 161976 168376 171576 171776 181176 184376 190776 193976 197176 200376 203576 209776 213176 216376 225976 225976 225976 223376 235576 235576 238776 241976 245176 248376 251576 | 257016 51 155424 158688 161952 165216 168480 171744 175008 178272 181536 184800 188064 191328 194592 197856 201120 204384 207648 210912 214176 217440 220704 223968 227232 230496 233760 237024 240288 243552 246816 250380 | | 208056 43 131040 133792 136544 139296 142048 144800 147552 150304 153056 155808 158560 161312 164064 166816 169568 172320 175072 177824 180576 183328 186080 188328 191584 194336 197088 199840 202592 205344 208096 210848 213600 216352 219104 | 214176 44 134088 136904 139720 142536 145352 148168 150984 153800 156616 159432 162248 165064 167880 170696 173512 176328 179144 181960 184776 187592 190408 193224 196040 198856 201672 204488 207304 210120 212936 215752 218568 221384 224200 | 220296 45 137136 140016 142896 145776 148656 151536 154416 157296 160176 163056 165936 168816 171696 174576 180336 183216 186096 188976 191856 194736 20496 203376 206256 209136 212016 214896 217776 220656 223536 226416 229296 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 163736 166680 169624 172568 175512 178456 181400 184344 187288 190232 193176 196120 199064 202098 204952 207896 210840 213784 216728 222616 225560 228504 231448 234392 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312
176320
179328
182336
185344
188352
191360
194368
197376
200384
203392
206400
209408
212416
215424
218432
221440
224448
227456
230464
233472
236480
239488 | 238656 48 146280 149352 152424 155496 158568 161640 164712 167784 170856 173928 177000 180072 183144 186216 189288 192360 195432 198504 201576 204648 207720 210792 213864 216936 220008 223080 226152 229224 232296 235368 238440 241512 244584 | 244776 49 149328 152464 155600 158736 161872 165008 168144 171280 174416 177552 180688 183824 186960 190096 193232 196368 199504 202640 205776 208912 212048 215184 215184 218320 221456 224592 227728 230864 234000 237136 240272 243408 246544 249680 | 250896 50 152376 155576 155576 158776 161976 165176 168376 171576 1717976 181176 184376 187576 190776 193976 203576 203776 204976 213176 215576 222776 229176 225976 229176 235576 235576 241976 245176 245176 245176 255776 251576 251576 | 257016 51 155424 158688 161952 165216 168480 171744 175008 178272 181536 184800 188064 191328 194592 197856 201120 204384 207648 210912 214176 217440 223704 223968 227232 230496 233760 237024 240288 246816 250080 253344 256608 259872 | | 208056 43 131040 133792 136544 139296 142048 144800 147552 150304 153056 155808 158560 161312 164064 166816 169568 172320 175072 177824 180576 183328 186080 188832 191584 194336 197088 199840 202592 2053444 208096 210848 213600 216352 219104 221856 | 214176 44 134088 136904 139720 142536 145352 148168 150984 153800 156616 159432 162248 165064 173512 176328 179144 181960 184776 187592 190408 193224 196040 198856 201672 204488 207304 210120 212936 215752 218568 221384 224200 227016 | 220296 45 137136 140016 142896 145776 148656 151536 154416 157296 160176 163056 165936 168816 171696 174576 180336 183216 180336 183216 200496 203376 206256 209136 212016 214896 217776 220656 223536 226416 229296 232176 | 226416 46 140184 143128 146072 149016 151960 154904 157848 160792 163736 166680 169624 172568 175512 178456 181400 184344 187288 190232 193176 196120 199064 20208 204952 207896 210840 213784 216728 229616 225560 228504 231448 234392 237336 | 232536
47
143232
146240
149248
152256
155264
158272
161280
164288
167296
170304
173312
176320
179328
182336
185344
188352
191360
194368
197376
200384
203392
206400
209408
212416
215424
218432
221440
224448
227456
230464
233472
236480
239488
242496 | 238656 48 146280 149352 152424 155496 168568 161640 164712 167784 170856 173928 177000 180072 183144 186216 189288 192360 195432 198504 201576 204648 207720 210792 213864 2210792 213864 223080 226152 229224 232296 235368 238440 241512 244584 247656 | 244776 49 149328 152464 155600 158736 161872 165008 168144 171280 174416 177552 180688 183824 186960 190096 193232 196368 199504 202640 205776 208912 212048 215184 215184 218320 221456 224592 227728 230864 234000 237136 240272 243400 237136 240272 243400 252816 | 250896 50 152376 155576 158776 161976 165176 168376 171576 177976 181176 184376 193776 193976 193976 203576 203576 203576 203776 222776 2229776 2229776 2229776 225976 229176 235376 245176 245176 245176 255776 | 51
155424
158688
161952
165216
168480
171744
175008
178272
181536
184800
188064
191328
194592
197856
201120
204384
207648
210912
214176
217440
220704
223968
227232
230496
233760
237024
240288
24552
246816
250080
253344
256608
259872
263136 | TABLE 13-continued | | | | II IDE | D 13 C O. | IIIIIueu | | | | |---
---|--|--|--|--|--|---|--| | 230112 | 235464 | 240816 | 246168 | 251520 | 256872 | 262224 | 267576 | 272928 | | | | | | | | | | | | 232864 | 238280 | 243696 | 249112 | 254528 | 259944 | 265360 | 270776 | 276192 | | 235616 | 241096 | 246576 | 252056 | 257536 | 263016 | 268496 | 273976 | 279456 | | 238368 | 243912 | 249456 | 255000 | 260544 | 266088 | 271632 | 277176 | 282720 | | 241120 | 246728 | 252336 | 257944 | 263552 | 269160 | 274768 | 280376 | 285984 | | 243872 | 249544 | 255216 | 260888 | 266560 | 272232 | 277904 | 283576 | 289248 | | 246624 | 252360 | 258096 | 263832 | 269568 | 275304 | 281040 | 286776 | 292512 | | 249376 | 255176 | 260976 | 266776 | 272576 | 278376 | 284176 | 289976 | 295776 | | 252128 | 257992 | 263856 | 269720 | 275584 | 281448 | 287312 | 293176 | 299040 | | 254880 | 260808 | 266736 | 272664 | 278592 | 284520 | 290448 | 296376 | 302304 | | | | | | | | | | | | 257632 | 263624 | 269616 | 275608 | 281600 | 287592 | 293584 | 299576 | 305568 | | 260384 | 266440 | 272496 | 278552 | 284608 | 290664 | 296720 | 302776 | 308832 | | 263136 | 269256 | 275376 | 281496 | 287616 | 293736 | 299856 | 305976 | 312096 | | | | | | | | | =0 | | | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | | | | | | | | | | | | 158472 | 161520 | 164568 | 167616 | 170664 | 173712 | 176760 | 179808 | 182856 | | 161800 | 164912 | 168024 | 171136 | 174248 | 177360 | 180472 | 183584 | 186696 | | 165128 | 168304 | 171480 | 174656 | 177832 | 181008 | 184184 | 187360 | 190536 | | 168456 | 171696 | 174936 | 178176 | 181416 | 184656 | 187896 | 191136 | 194376 | | 171784 | 175088 | 178392 | 181696 | 185000 | 188304 | 191608 | 194912 | 198216 | | 175112 | 178480 | 181848 | 185216 | 188584 | 191952 | 195320 | 198688 | 202056 | | 178440 | 181872 | 185304 | 188736 | 192168 | 195600 | 199032 | 202464 | 205896 | | 181768 | 185264 | 188760 | 192256 | 195752 | 199248 | 202744 | 206240 | 209736 | | | | 192216 | | 193732 | | 202744 | | 213576 | | 185096 | 188656 | | 195776 | | 202896 | | 210016 | | | 188424 | 192048 | 195672 | 199296 | 202920 | 206544 | 210168 | 213792 | 217416 | | 191752 | 195440 | 199128 | 202816 | 206504 | 210192 | 213880 | 217568 | 221256 | | 195080 | 198832 | 202584 | 206336 | 210088 | 213840 | 217592 | 221344 | 225096 | | 198408 | 202224 | 206040 | 209856 | 213672 | 217488 | 221304 | 225120 | 228936 | | 201736 | 205616 | 209496 | 213376 | 217256 | 221136 | 225016 | 228896 | 232776 | | 205064 | 209008 | 212952 | 216896 | 220840 | 224784 | 228728 | 232672 | 236616 | | 208392 | 212400 | 216408 | 220416 | 224424 | 228432 | 232440 | 236448 | 240456 | | 211720 | 215792 | 219864 | 223936 | 228008 | 232080 | 236152 | 240224 | 244296 | | 215048 | 219184 | 223320 | 227456 | 231592 | 235728 | 239864 | 244000 | 248136 | | 218376 | 222576 | 226776 | 230976 | 235176 | 239376 | 243576 | 247776 | 251976 | | | | | | | | | | | | 221704 | 225968 | 230232 | 234496 | 238760 | 243024 | 247288 | 251552 | 255816 | | 225032 | 229360 | 233688 | 238016 | 242344 | 246672 | 251000 | 255328 | 259656 | | 228360 | 232752 | 237144 | 241536 | 245928 | 250320 | 254712 | 259104 | 263496 | | 231688 | 236144 | 240600 | 245056 | 249512 | 253968 | 258424 | 262880 | 267336 | | 235016 | 239536 | 244056 | 248576 | 253096 | 257616 | 262136 | 266656 | 271176 | | 238344 | 242928 | 247512 | 252096 | 256680 | 261264 | 265848 | 270432 | 275016 | | 241672 | 246320 | 250968 | 255616 | 260264 | 264912 | 269560 | 274208 | 278856 | | 245000 | 249712 | 254424 | 259136 | 263848 | 268560 | 273272 | 277984 | 282696 | | 248328 | 253104 | 257880 | 262656 | 267432 | 272208 | 276984 | 281760 | 286536 | | 251656 | 256496 | 261336 | 266176 | 271016 | 275856 | 280696 | 285536 | 290376 | | 254984 | 259888 | 264792 | 269696 | 274600 | 279504 | 284408 | 289312 | 294216 | | | | | | | | | | | | 258312 | 263280 | 268248 | 273216 | 278184 | 283152 | 288120 | 293088 | 298056 | | 261640 | 266672 | 271704 | 276736 | 281768 | 286800 | 291832 | 296864 | 301896 | | 264968 | 270064 | 275160 | 280256 | 285352 | 290448 | 295544 | 300640 | 305736 | | 268296 | 273456 | 278616 | 283776 | 288936 | 294096 | 299256 | 304416 | 309576 | | 271624 | 276848 | 282072 | 287296 | 292520 | 297744 | 302968 | 308192 | 313416 | | 274952 | 280240 | 285528 | 290816 | 296104 | 301392 | 306680 | 311968 | 317256 | | 278280 | 283632 | 288984 | 294336 | 299688 | 305040 | | 04.55.4.4 | | | 281608 | | | 22-1330 | 2000 | 303040 | 310392 | 315744 | 321096 | | | 287024 | 292440 | 297856 | 303272 | 308688 | 310392
314104 | 315744
319520 | 321096
324936 | | 284936 | | | 297856 | 303272 | 308688 | 314104 | 319520 | 324936 | | 284936
288264 | 290416 | 295896 | 297856
301376 | 303272
306856 | 308688
312336 | 314104
317816 | 319520
323296 | 324936
328776 | | 288264 | 290416
293808 | 295896
299352 | 297856
301376
304896 | 303272
306856
310440 | 308688
312336
315984 | 314104
317816
321528 | 319520
323296
327072 | 324936
328776
332616 | | 288264
291592 | 290416
293808
297200 | 295896
299352
302808 | 297856
301376
304896
308416 | 303272
306856
310440
314024 | 308688
312336
315984
319632 | 314104
317816
321528
325240 | 319520
323296
327072
330848 | 324936
328776
332616
336456 | | 288264
291592
294920 | 290416
293808
297200
300592 | 295896
299352
302808
306264 | 297856
301376
304896
308416
311936 | 303272
306856
310440
314024
317608 | 308688
312336
315984
319632
323280 | 314104
317816
321528
325240
328952 | 319520
323296
327072
330848
334624 | 324936
328776
332616
336456
340296 | | 288264
291592
294920
298248 | 290416
293808
297200
300592
303984 | 295896
299352
302808
306264
309720 | 297856
301376
304896
308416
311936
315456 | 303272
306856
310440
314024
317608
321192 | 308688
312336
315984
319632
323280
326928 | 314104
317816
321528
325240
328952
332664 | 319520
323296
327072
330848
334624
338400 | 324936
328776
332616
336456
340296
344136 | | 288264
291592
294920
298248
301576 | 290416
293808
297200
300592
303984
307376 | 295896
299352
302808
306264
309720
313176 | 297856
301376
304896
308416
311936
315456
318976 | 303272
306856
310440
314024
317608
321192
324776 | 308688
312336
315984
319632
323280
326928
330576 | 314104
317816
321528
325240
328952
332664
336376 | 319520
323296
327072
330848
334624
338400
342176 | 324936
328776
332616
336456
340296
344136
347976 | | 288264
291592
294920
298248
301576
304904 | 290416
293808
297200
300592
303984
307376
310768 | 295896
299352
302808
306264
309720
313176
316632 | 297856
301376
304896
308416
311936
315456
318976
322496 | 303272
306856
310440
314024
317608
321192
324776
328360 | 308688
312336
315984
319632
323280
326928
330576
334224 | 314104
317816
321528
325240
328952
332664
336376
340088 | 319520
323296
327072
330848
334624
338400
342176
345952 | 324936
328776
332616
336456
340296
344136
347976
351816 | | 288264
291592
294920
298248
301576
304904
308232 | 290416
293808
297200
300592
303984
307376
310768
314160 | 295896
299352
302808
306264
309720
313176
316632
320088 | 297856
301376
304896
308416
311936
315456
318976
322496
326016 | 303272
306856
310440
314024
317608
321192
324776
328360
331944 | 308688
312336
315984
319632
323280
326928
330576
334224
337872 | 314104
317816
321528
325240
328952
332664
336376
340088
343800 | 319520
323296
327072
330848
334624
338400
342176
345952
349728 | 324936
328776
332616
336456
340296
344136
347976
351816
355656 | | 288264
291592
294920
298248
301576
304904 | 290416
293808
297200
300592
303984
307376
310768 | 295896
299352
302808
306264
309720
313176
316632
320088
323544 |
297856
301376
304896
308416
311936
315456
318976
322496 | 303272
306856
310440
314024
317608
321192
324776
328360 | 308688
312336
315984
319632
323280
326928
330576
334224 | 314104
317816
321528
325240
328952
332664
336376
340088 | 319520
323296
327072
330848
334624
338400
342176
345952 | 324936
328776
332616
336456
340296
344136
347976
351816 | | 288264
291592
294920
298248
301576
304904
308232 | 290416
293808
297200
300592
303984
307376
310768
314160 | 295896
299352
302808
306264
309720
313176
316632
320088 | 297856
301376
304896
308416
311936
315456
318976
322496
326016 | 303272
306856
310440
314024
317608
321192
324776
328360
331944 | 308688
312336
315984
319632
323280
326928
330576
334224
337872 | 314104
317816
321528
325240
328952
332664
336376
340088
343800 | 319520
323296
327072
330848
334624
338400
342176
345952
349728 | 324936
328776
332616
336456
340296
344136
347976
351816
355656 | | 288264
291592
294920
298248
301576
304904
308232
311560 | 290416
293808
297200
300592
303984
307376
310768
314160
317552 | 295896
299352
302808
306264
309720
313176
316632
320088
323544 | 297856
301376
304896
308416
311936
315456
318976
322496
326016
329536 | 303272
306856
310440
314024
317608
321192
324776
328360
331944
335528 | 308688
312336
315984
319632
323280
326928
330576
334224
337872
341520 | 314104
317816
321528
325240
328952
332664
336376
340088
343800
347512 | 319520
323296
327072
330848
334624
338400
342176
345952
349728
353504 | 324936
328776
332616
336456
340296
344136
347976
351816
355656
359496 | | 288264
291592
294920
298248
301576
304904
308232
311560
314888 | 290416
293808
297200
300592
303984
307376
310768
314160
317552
320944 | 295896
299352
302808
306264
309720
313176
316632
320088
323544
327000 | 297856
301376
304896
308416
311936
315456
318976
322496
326016
329536
333056 | 303272
306856
310440
314024
317608
321192
324776
328360
331944
335528
339112 | 308688
312336
315984
319632
323280
326928
330576
334224
337872
341520
345168 | 314104
317816
321528
325240
328952
332664
336376
340088
343800
347512
351224 | 319520
323296
327072
330848
334624
338400
342176
345952
349728
353504
357280 | 324936
328776
332616
336456
340296
344136
347976
351816
355656
359496
363336 | | 288264
291592
294920
298248
301576
304904
308232
311560
314888
318216 | 290416
293808
297200
300592
303984
307376
310768
314160
317552
320944
324336 | 295896
299352
302808
306264
309720
313176
316632
320088
323544
327000
330456 | 297856
301376
304896
308416
311936
315456
318976
322496
326016
329536
333056
336576 | 303272
306856
310440
314024
317608
321192
324776
328360
331944
335528
339112 | 308688
312336
315984
319632
323280
326928
330576
334224
337872
341520
345168
348816 | 314104
317816
321528
325240
328952
332664
336376
340088
343800
347512
351224
354936 | 319520
323296
327072
330848
334624
338400
342176
345952
349728
353504
357280
361056 | 324936
328776
332616
336456
340296
344136
347976
351816
355656
359496
363336
367176 | | 288264
291592
294920
298248
301576
304904
308232
311560
314888 | 290416
293808
297200
300592
303984
307376
310768
314160
317552
320944
324336 | 295896
299352
302808
306264
309720
313176
316632
320088
323544
327000 | 297856
301376
304896
308416
311936
315456
318976
322496
326016
329536
333056 | 303272
306856
310440
314024
317608
321192
324776
328360
331944
335528
339112 | 308688
312336
315984
319632
323280
326928
330576
334224
337872
341520
345168 | 314104
317816
321528
325240
328952
332664
336376
340088
343800
347512
351224 | 319520
323296
327072
330848
334624
338400
342176
345952
349728
353504
357280 | 324936
328776
332616
336456
340296
344136
347976
351816
355656
359496
363336
367176 | | 288264
291592
294920
298248
301576
304904
308232
311560
314888
318216 | 290416
293808
297200
300592
303984
307376
310768
314160
317552
320944
324336 | 295896
299352
302808
306264
309720
313176
316632
320088
323544
327000
330456 | 297856
301376
304896
308416
311936
315456
318976
322496
326016
329536
333056
336576 | 303272
306856
310440
314024
317608
321192
324776
328360
331944
335528
339112
342696 | 308688
312336
315984
319632
323280
326928
330576
334224
337872
341520
345168
348816 | 314104
317816
321528
325240
328952
332664
336376
340088
343800
347512
351224
354936 | 319520
323296
327072
330848
334624
338400
342176
345952
349728
353504
357280
361056 | 324936
328776
332616
336456
340296
344136
347976
351816
355656
359496
363336
367176 | | 288264
291592
294920
298248
301576
304904
308232
311560
314888
318216 | 290416
293808
297200
300592
303984
307376
310768
314160
317552
320944
324336 | 295896
299352
302808
306264
309720
313176
316632
320088
323544
327000
330456 | 297856
301376
304896
308416
31936
315456
318976
326016
329536
33056
336576 | 303272
306856
310440
314024
317608
321192
324776
328360
331944
335528
339112
342696 | 308688
312336
315984
319632
323280
326928
330576
334224
337872
341520
345168
348816
64 | 314104
317816
321528
325240
328952
332664
336376
340088
343800
347512
351224
354936
65 | 319520
323296
327072
330848
334624
338400
342176
345952
349728
353504
357280
361056 | 324936
328776
332616
336456
340296
344136
347976
351816
355656
363336
367176 | | 288264
291592
294920
298248
301576
304904
308232
311560
314888
318216 | 290416
293808
297200
300592
303984
307376
310768
314160
317552
320944
324336 | 295896
299352
302808
306264
309720
313176
316632
320088
323544
327000
330456 | 297856
301376
304896
308416
311936
315456
318976
322496
326016
329536
333056
336576 | 303272
306856
310440
314024
317608
321192
324776
328360
331944
335528
339112
342696 | 308688
312336
315984
319632
323280
326928
330576
334224
337872
341520
345168
348816
64 | 314104
317816
321528
325240
328952
332664
336376
340088
343800
347512
351224
354936
65 | 319520
323296
327072
330848
334624
338400
342176
345952
349728
353504
357280
361056 | 324936
328776
332616
336456
340296
344136
347976
351816
355656
359496
363336
367176 | | 288264
291592
294920
298248
301576
304904
308232
311560
314888
318216 | 290416
293808
297200
300592
303984
307376
310768
314160
317552
320944
324336 | 295896
299352
302808
306264
309720
313176
316632
320088
323544
327000
330456
62
188952
192920
196888 | 297856
301376
304896
308416
311936
315456
318976
322496
326016
329536
333056
336576 | 303272
306856
310440
314024
317608
321192
324776
328360
331944
335528
339112
342696 | 308688
312336
315984
319632
323280
326928
330576
334224
337872
341520
345168
348816
64 | 314104
317816
321528
325240
328952
332664
336376
340088
343800
347512
351224
354936
65 | 319520
323296
327072
330848
334624
338400
342176
345952
349728
353504
357280
361056 | 324936
328776
332616
336456
340296
344136
357976
351816
355656
359496
363336
367176 | | 288264
291592
294920
298248
301576
304904
308232
311560
314888
318216 | 290416
293808
297200
300592
303984
307376
310768
314160
317552
320944
324336
1 | 295896
299352
30288
306264
309720
313176
316632
320088
323544
327000
330456
62
188952
192920
19688
200856 | 297856
301376
304896
308416
311936
315456
318976
322496
326016
329536
333056
336576
63 | 303272
306856
310440
314024
317608
321192
324776
328360
331944
335528
339112
342696 | 308688
312336
315984
319632
323280
326928
330576
334224
337872
341520
345168
348816
64
195048
199144
203240
207336 |
314104
317816
321528
325240
328952
332664
336376
340088
343800
347512
351224
354936
65
198096
202256
206416
210576 | 319520
323296
327072
330848
334624
338400
342176
345952
349728
353504
357280
361056 | 324936
328776
332616
332616
336456
340296
344136
351816
351816
355656
359496
363336
367176
6 | | 288264
291592
294920
298248
301576
304904
308232
311560
314888
318216
6
185
189
193
197
201 | 290416
293808
297200
300592
303984
307376
310768
314160
317552
320944
324336
1
904
808
712
616
520 | 295896
299352
302808
306264
309720
313176
316632
320088
323544
327000
330456
62
188952
192920
196888
200856
204824 | 297856
301376
304896
308416
311936
315456
318976
322496
326016
329536
333056
336576
63
192000
196032
200064
204096
208128 | 303272
306856
310440
314024
317608
321192
324776
328360
331944
335528
339112
342696 | 308688
312336
315984
319632
323280
326928
330576
334224
337872
341520
345168
348816
64
195048
199144
203240
207336
211432 | 314104
317816
321528
325240
328952
332664
336376
340088
343800
347512
351224
354936
65
198096
202256
206416
210576
214736 | 319520
323296
327072
330848
334624
338400
342176
345952
349728
353504
357280
361056
6
201
205
209
213
218 | 324936
328776
332616
336456
340296
344136
347976
351816
355656
359496
363336
367176
6 | | 288264
291592
294920
298248
301576
304904
308232
311560
314888
318216
6
185
189
193
197
201
205 | 290416
293808
297200
300592
303984
307376
310768
314160
317552
320944
324336
1
904
808
712
616
520
424 | 295896
299352
302808
306264
309720
313176
316632
320088
323544
327000
330456
62
188952
192920
196888
200856
204824
208792 | 297856
301376
304896
308416
311936
315456
318976
326016
329536
33056
336576
63
192000
196032
200064
204096
208128
212160 | 303272
306856
310440
314024
317608
321192
324776
328360
331944
335528
339112
342696 | 308688
312336
315984
319632
323280
326928
330576
334224
337872
341520
345168
348816
64
195048
199144
203240
207336
211432
215528 | 314104
317816
321528
325240
328952
332664
336376
340088
343800
347512
351224
354936
65
198096
202256
206416
210576
214736
218896 | 319520
323296
327072
330848
334624
338400
342176
345952
349728
353504
357280
361056 | 324936
328776
332616
336456
340296
344136
347976
351816
355656
363336
367176
6
144
368
592
816
040
264 | | 288264
291592
294920
298248
301576
304904
308232
311560
314888
318216
6
185
189
193
197
201
205
209 | 290416
293808
297200
300592
303984
307376
310768
314160
317552
320944
324336
1
904
808
712
616
520
424
328 | 295896
299352
302808
306264
309720
313176
316632
320088
323544
327000
330456
62
188952
192920
196888
200856
204824
208792
212760 | 297856 301376 304896 308416 311936 315456 318976 322496 326016 329536 333056 336576 63 192000 196032 200064 204096 208128 212166 216192 | 303272
306856
310440
314024
317608
321192
324776
328360
331944
335528
339112
342696 | 308688
312336
315984
319632
323280
326928
330576
334224
337872
341520
345168
348816
64
195048
199144
203240
207336
211432
215528
219624 | 314104
317816
321528
325240
328952
332664
336376
340088
343800
347512
351224
354936
65
198096
202256
206416
210576
214736
2148896
223056 | 319520
323296
327072
330848
334624
338400
342176
345952
349728
353504
357280
361056 | 324936
328776
332616
336456
340296
344136
357976
351816
355656
359496
363336
367176
6 | | 288264
291592
294920
298248
301576
304904
308232
311560
314888
318216
6
185
189
193
197
201
205
209
213 | 290416
293808
297200
300592
303984
307376
310768
314160
317552
320944
324336
1
904
808
712
616
520
424
328
232 | 295896
299352
30288
306264
309720
313176
316632
320088
323544
327000
330456
62
188952
192920
196888
200856
204824
208792
212760
216728 | 297856 301376 304896 308416 311936 315456 318976 322496 326016 329536 333056 336576 63 192000 196032 200064 204096 208128 212160 216192 220224 | 303272
306856
310440
314024
317608
321192
324776
328360
331944
335528
339112
342696 | 308688
312336
315984
319632
323280
326928
330576
334224
337872
341520
345168
348816
64
195048
199144
203240
207336
211432
215528
219624
223720 | 314104
317816
321528
325240
328952
332664
336376
340088
343800
347512
351224
354936
65
198096
202256
206416
210576
214736
218896
223056
227216 | 319520
323296
327072
330848
334624
338400
342176
345952
349728
353504
357280
361056
6
201
205
209
213
218
222
226
230 | 324936
328776
332616
336456
340296
344136
351816
355656
359496
363336
367176
6 | | 288264
291592
294920
298248
301576
304904
308232
311560
314888
318216
6
185
189
193
197
201
205
209 | 290416
293808
297200
300592
303984
307376
310768
314160
317552
320944
324336
1
904
808
712
616
520
424
328
232 | 295896
299352
302808
306264
309720
313176
316632
320088
323544
327000
330456
62
188952
192920
196888
200856
204824
208792
212760 | 297856 301376 304896 308416 311936 315456 318976 322496 326016 329536 333056 336576 63 192000 196032 200064 204096 208128 212166 216192 | 303272
306856
310440
314024
317608
321192
324776
328360
331944
335528
339112
342696 | 308688
312336
315984
319632
323280
326928
330576
334224
337872
341520
345168
348816
64
195048
199144
203240
207336
211432
215528
219624 | 314104
317816
321528
325240
328952
332664
336376
340088
343800
347512
351224
354936
65
198096
202256
206416
210576
214736
2148896
223056 | 319520
323296
327072
330848
334624
338400
342176
345952
349728
353504
357280
361056 | 324936
328776
332616
336456
340296
344136
351816
355656
359496
363336
367176
6 | | 288264
291592
294920
298248
301576
304904
308232
311560
314888
318216
6
185
189
193
197
201
205
209
213
217 | 290416
293808
297200
300592
303984
307376
310768
314160
317552
320944
324336
1
904
808
712
616
520
424
328
232 | 295896
299352
30288
306264
309720
313176
316632
320088
323544
327000
330456
62
188952
192920
196888
200856
204824
208792
212760
216728 | 297856 301376 304896 308416 311936 315456 318976 322496 326016 329536 333056 336576 63 192000 196032 200064 204096 208128 212160 216192 220224 | 303272
306856
310440
314024
317608
321192
324776
328360
331944
335528
339112
342696 | 308688
312336
315984
319632
323280
326928
330576
334224
337872
341520
345168
348816
64
195048
199144
203240
207336
211432
215528
219624
223720 | 314104
317816
321528
325240
328952
332664
336376
340088
343800
347512
351224
354936
65
198096
202256
206416
210576
214736
218896
223056
227216 | 319520
323296
327072
330848
334624
338400
342176
345952
349728
353504
357280
361056
6
201
205
209
213
218
222
226
230 | 324936
328776
332616
332616
336456
340296
344136
351816
355656
359496
363336
367176
6
144
368
5592
816
040
264
488
712 | | 288264
291592
294920
298248
301576
304904
308232
311560
314888
318216
6
185
189
193
197
201
205
209
213
217
221 | 290416
293808
297200
300592
303984
307376
310768
314160
317552
320944
324336
1
904
808
712
616
520
424
328
232
136 | 295896
299352
302808
306264
309720
313176
316632
320088
323544
327000
330456
62
188952
192920
196888
200856
204824
208792
212760
216728
220696
224664 | 297856 301376 304896 308416 311936 315456 318976 322496 326916 329536 333056 336576 63 192000 196032 200064 204096 208128 212160 216192 220224 224256 228288 | 303272
306856
310440
314024
317608
321192
324776
328360
331944
335528
339112
342696 |
308688
312336
315984
319632
323280
326928
330576
334224
337872
345168
348816
64
195048
199144
203240
207336
211432
215528
219624
223720
227816
231912 | 314104
317816
321528
325240
328952
332664
336376
340088
343800
347512
351224
354936
65
198096
202256
206416
210576
214736
218896
223056
227216
231376
235536 | 319520
323296
327072
330848
334624
338400
342176
345952
349728
353504
357280
361056
6
201
205
209
213
218
222
226
230
234
234 | 324936
328776
332616
332616
340296
344136
347976
351816
355656
359496
363336
367176
6
144
368
5592
816
040
264
488
7712
936
160 | | 288264
291592
294920
298248
301576
304904
308232
311560
314888
318216
6
185
189
193
197
201
205
209
213
217
221 | 290416
293808
297200
300592
303984
307376
310768
314160
317552
320944
324336
1
904
808
712
616
520
424
328
232
136
040 | 295896
299352
302808
306264
309720
313176
316632
320088
323544
327000
330456
62
188952
192920
19688
200856
204824
208792
212760
216728
220696 | 297856 301376 304896 308416 311936 315456 318976 322496 329536 333056 336576 63 192000 196032 200064 204096 208128 212160 216192 220224 224256 | 303272
306856
310440
314024
317608
321192
324776
328360
331944
335528
339112
342696 | 308688
312336
315984
319632
323280
326928
330576
334224
337872
341520
345168
348816
64
195048
199144
203240
207336
211432
215528
219624
223720
227816 | 314104
317816
321528
325240
328952
332664
336376
340088
343800
347512
351224
354936
65
198096
202256
206416
210576
214736
218896
223056
227216
231376 | 319520
323296
327072
330848
334624
338400
342176
345952
349728
353504
357280
361056
6
201
205
209
213
218
222
226
230
234 | 324936
328776
332616
336456
340296
344136
347976
351816
355656
355456
363336
367176
6
144
368
5592
816
040
2264
4488
7712
936
160
384 | TABLE 13-continued | | | 1710000 13 | -continued | | | |--------|--------|------------|------------|--------|--------| | 232752 | 236568 | 240384 | 244200 | 248016 | 251832 | | 236656 | 240536 | 244416 | 248296 | 252176 | 256056 | | 240560 | 244504 | 248448 | 252392 | 256336 | 260280 | | 244464 | 248472 | 252480 | 256488 | 260496 | 264504 | | 248368 | 252440 | 256512 | 260584 | 264656 | 268728 | | 252272 | 256408 | 260544 | 264680 | 268816 | 272952 | | 256176 | 260376 | 264576 | 268776 | 272976 | 277176 | | 260080 | 264344 | 268608 | 272872 | 277136 | 281400 | | 263984 | 268312 | 272640 | 276968 | 281296 | 285624 | | 267888 | 272280 | 276672 | 281064 | 285456 | 289848 | | 271792 | 276248 | 280704 | 285160 | 289616 | 294072 | | 275696 | 280216 | 284736 | 289256 | 293776 | 298296 | | 279600 | 284184 | 288768 | 293352 | 297936 | 302520 | | 283504 | 288152 | 292800 | 297448 | 302096 | 306744 | | 287408 | 292120 | 296832 | 301544 | 306256 | 310968 | | 291312 | 296088 | 300864 | 305640 | 310416 | 315192 | | 295216 | 300056 | 304896 | 309736 | 314576 | 319416 | | 299120 | 304024 | 308928 | 313832 | 318736 | 323640 | | 303024 | 307992 | 312960 | 317928 | 322896 | 327864 | | 306928 | 311960 | 316992 | 322024 | 327056 | 332088 | | 310832 | 315928 | 321024 | 326120 | 331216 | 336312 | | 314736 | 319896 | 325056 | 330216 | 335376 | 340536 | | 318640 | 323864 | 329088 | 334312 | 339536 | 344760 | | 322544 | 327832 | 333120 | 338408 | 343696 | 348984 | | 326448 | 331800 | 337152 | 342504 | 347856 | 353208 | | 330352 | 335768 | 341184 | 346600 | 352016 | 357432 | | 334256 | 339736 | 345216 | 350696 | 356176 | 361656 | | 338160 | 343704 | 349248 | 354792 | 360336 | 365880 | | 342064 | 347672 | 353280 | 358888 | 364496 | 370104 | | 345968 | 351640 | 357312 | 362984 | 368656 | 374328 | | 349872 | 355608 | 361344 | 367080 | 372816 | 378552 | | 353776 | 359576 | 365376 | 371176 | 376976 | 382776 | | 357680 | 363544 | 369408 | 375272 | 381136 | 387000 | | 361584 | 367512 | 373440 | 379368 | 385296 | 391224 | | 365488 | 371480 | 377472 | 383464 | 389456 | 395448 | | 369392 | 375448 | 381504 | 387560 | 393616 | 399672 | | 373296 | 379416 | 385536 | 391656 | 397776 | 403896 | | | | | | | | All or some of the transport block sizes of Table 13 may be 35 code blocks. The size of transport block may be determined used as a transport block size in a system supporting 256QAM. In addition, some of the transport block sizes of Table 13 support 256QAM, and may be used as a size of transport block transmitted through 2-layer, 3-layer, 4-layer or 5-layer, 6-layer, 7-layer, 8-layer. According to another embodiment of the present invention, a size of transport block may be determined by differently setting a rank supported depending on a modulation scheme. For example, some of the transport block sizes among the transport block sizes of Table 13 support 256QAM, and may 45 be determined not to support a transport block size greater than or equal to 3-layer as a size of transport block transmitted with a specific rank or below (i.e., 2 layer or below). FIG. 13 is a flowchart showing a method of performing turbo coding for a transport block according to an embodi- 50 ment of the present invention. Referring to FIG. 13, a size of transport block is determined According to the embodiment of the present invention, an unnecessary dummy bit can be removed by determining the 55 size of transport block according to a size of a turbo code The size of transport block may be determined according to whether one transport block is segmented into a single code block or multiple code blocks as described above. If the 60 transport block is segmented into the single code block, the size of transport block may be a value obtained by subtracting a CRC bit size from the turbo code internal interleaver size. If the transport block is segmented into the multiple code blocks, the size of transport block may be a value obtained by subtracting a CRC bit size from a value obtained by multiplying a size of each code block by the number of segmented by additionally considering a modulation scheme (e.g., 64QAM, 256QAM) and an allocation resource. For turbo coding, the transport block is subjected to code block segmentation (step S1320). In the code block segmentation, a single transport block may be determined to the code block when the single transport block is not segmented into multiple code blocks. If the single transport block is segmented into the multiple code blocks, the single transport block may be determined to the multiple code blocks. On the basis of the turbo code internal interleaver, data included in the code block is interleaved (step S1340). The turbo code internal interleaver may interleave the data included in the code block. A size of interleaved code block may be a value obtained by considering the turbo code internal interleaver size as described above. Turbo coding is performed on the interleaved code block (step S1360). The turbo coding may be performed on the interleaved code block. A size of code block may be determined by considering the turbo code internal interleaver size, thereby being able to reduce a dummy bit generated in turbo coding. FIG. 14 is a block diagram of a wireless communication system according to an embodiment of the present invention. Referring to FIG. 14, a BS 1400 includes a processor 1410, a memory 1420, and a radio frequency (RF) unit 1430. The memory 1420 is coupled to the processor 1410, and stores a variety of information for driving the processor 1410. The RF unit 1420 is coupled to the processor 1410, and transmits and/or receives a radio signal. The processor 1410 implements the proposed functions, procedures, and/or methods. In the aforementioned embodiment, an operation of the BS may be implemented by the processor 1410. For example, the processor 1410 determines a size of a transport block, divides the transport block into at least one code block based on the size of transport block, interleaves 5 the at least one code block by an interleaver, and performs a turbo coding for the interleaved at least one code block. The processor 1410 may be determined based on the number of the divided code blocks. A wireless device 1450 includes a processor 1460, a 10 memory 1470, and an RF unit 1480. The memory 1470 is coupled to the processor 1460, and stores a variety of information for driving the processor 1460. The RF unit 1480 is coupled to the processor 1460, and transmits and/or receives a radio signal. The processor 1460 implements the proposed 15 functions, procedures, and/or methods. In the aforementioned embodiment, an operation of the wireless device may be implemented by the processor 1460. For example, the processor 1460 determines a size of a transport block, divides the transport block into at least one 20 code block based on the size of transport block, interleaves the at least one code block by an interleaver, and performs a turbo coding for the interleaved at least one code block. The processor 1460 may be determined based on the number of the divided code blocks. The processor may include an application-specific integrated circuit (ASIC), a separate chipset, a logic circuit, and a data processing unit. The memory may include a read-only memory (ROM), a random access memory (RAM), a flash memory, a memory card, a storage medium, and/or other 30 equivalent storage devices. The RF unit may include a baseband circuit for processing a radio signal. When the embodiment of the present
invention is implemented in software, the aforementioned methods can be implemented with a module (i.e., process, function, etc.) for performing the aforemen- 35 tioned functions. The module may be stored in the memory and may be performed by the processor. The memory may be located inside or outside the processor, and may be coupled to the processor by using various well-known means. Although the aforementioned exemplary system has been 40 described on the basis of a flowchart in which steps or blocks are listed in sequence, the steps of the present invention are not limited to a certain order. Therefore, a certain step may be performed in a different step or in a different order or concurrently with respect to that described above. Further, it will 45 be understood by those ordinary skilled in the art that the steps of the flowcharts are not exclusive. Rather, another step may be included therein or one or more steps may be deleted within the scope of the present invention. #### What is claimed is: 1. A method for encoding a transport block in a wireless communication system, the method comprising: determining, by a transmitter, a size of the transport block; attaching, by the transmitter, a first cyclic redundancy 55 check (CRC) code to the transport block having the determined size to produce a first CRC-attached transport block; segmenting, by the transmitter, the first CRC-attached size of the first CRC-attached transport block is larger than a maximum code block size; attaching, by the transmitter, a second CRC code to each of the plurality of code blocks to produce a plurality of second CRC-attached code blocks; and encoding, by the transmitter, the second CRC-attached code blocks by a turbo-encoder, 34 wherein the size of the transport block is determined from among a plurality of first predetermined transport block sizes. wherein the size of the transport block is determined based on a 256 quadrature amplitude modulation (OAM) scheme, a size of an allocated resource, and a number of wherein the plurality of the first predetermined transport block sizes includes 305976 bits, 324336 bits, and 391656 bits when the transport block is mapped to fourlayer spatial multiplexing, and wherein the size of the transport block is determined from among a plurality of second predetermined transport block sizes to satisfy that a size of the first CRC-attached transport block is equal to an internal interleavers size of the turbo-encoder when the size of the first CRC-attached transport block is smaller than or equal to the maximum code block size. 2. The method of claim 1, wherein a size of each of the code blocks is equal to a size corresponding to when the size of the transport block is the 305976 bits, the 324336 bits, or the 391656 bits, and an internal interleaver size of the turboencoder for encoding the second CRC-attached code blocks 3. The method of claim 1, wherein the plurality of predetermined first transport block sizes further includes 314888 bits, 339112 bits, 351224 bits, 363336 bits, and 375448 bits when the transport block is mapped to four-layer spatial multiplexing, and wherein a size of each of the code blocks is equal to a size corresponding to when the size of the transport block is the 314888 bits, the 339112 bits, the 351224 bits, the 363336 bits or the 375448 bits and an internal interleaver size of the turbo-encoder for encoding the second CRCattached code blocks is 6080. 4. The method of claim 1, wherein the turbo-encoder interleaves an input bit as follows, $$c'_i = c_{\Pi(i)}, i = 0,1,\ldots,(L-1),$$ where the $c_{\Pi(i)}$ is an input bit of the internal interleaver, the c', is an output bit of the internal interleaver, the L is the size of the transport block, the i is an index of the input where $\Pi(i)$ is determined as below, $$\Pi(i)=(f_1\cdot i+f_2\cdot i^2) \mod L$$, and 50 wherein the f_1 and f_2 are predetermined values according to the L, the L is the size of the transport block, the i is the index of the input bit. 5. The method of claim 1, wherein the size of the transport block is determined based on a value of a rank, the value of the rank being used by the transmitter, when the transmitter uses a multiple input multiple output (MIMO) spatial multiplexing to transmit the transport block, and wherein the value of the rank is restricted by the modulation scheme. 6. A wireless apparatus configured for encoding a transport transport block into a plurality of code blocks when a 60 block in a wireless communication system, the wireless apparatus comprising: a transceiver configured to receive radio signals; and a processor configured to: determine a size of the transport block, attach a first cyclic redundancy check (CRC) code to the transport block having the determined size to produce a first CRC-attached transport block, segment the first CRC-attached transport block into a plurality of code blocks when a size of the first CRC-attached transport block is larger than a maximum code block size. attach a second CRC code to each of the plurality of code blocks to produce a plurality of second CRC-attached code blocks, and encode the second CRC-attached code blocks by a turbo-encoder, wherein the size of the transport block is determined from among a plurality of first predetermined transport block sizes. wherein the size of the transport block is determined based on a 256 quadrature amplitude modulation (QAM) scheme, a size of an allocated resource, and a number of layers, wherein the plurality of predetermined transport block sizes includes 305976 bits, 324336 bits, and 391656 bits when the transport block is mapped to four-layer spatial multiplexing, and wherein the size of the transport block is determined from among a plurality of second predetermined transport block sizes to satisfy that a size of the first CRC-attached transport block is equal to an internal interleavers size of the turbo-encoder when the size of the first CRC-attached transport block is smaller than or equal to the maximum code block size. 7. The wireless apparatus of claim $\bf 6$, wherein a size of each of the code blocks is equal to a size corresponding to when the size of the transport block is the 305976 bits, the 324336 bits, or the 391656 bits, and an internal interleaver size of the turbo-encoder for encoding the second CRC-attached code blocks is 6144. 36 8. The wireless apparatus of claim 6, wherein the plurality of predetermined first transport block sizes further includes 314888 bits, 339112 bits, 351224 bits, 363336 bits, and 375448 bits when the transport block is mapped to four-layer spatial multiplexing, and wherein a size of each of the code blocks is equal to a size corresponding to when the size of the transport block is the 314888 bits, the 339112 bits, the 351224 bits, the 363336 bits or the 375448 bits and an internal interleaver size of the turbo-encoder for encoding the second CRC-attached code block is 6080. 9. The wireless apparatus of claim 6, wherein the turboencoder interleaves an input bit as follows, $$c'_i = c_{\Pi(i)}, i = 0, 1, \dots, (L-1),$$ where the $c_{\Pi(i)}$ is an input bit of the internal interleaver, c'_i the is an output bit of the internal interleaver, the L is the size of the transport block, the i is an index of the input bit where $\Pi(i)$ is determined as below, $$\Pi(i)=(f_1\cdot i+f_2\cdot i^2) \mod L$$, and wherein the f_1 and f_2 are predetermined values according to the L, the L is the size of the transport block, the i is the index of the input bit. 10. The wireless apparatus of claim 6, wherein the size of the transport block is determined based on a value of a rank, the value of the rank being used by the wireless apparatus, when the wireless apparatus uses a multiple input multiple output (MIMO) spatial multiplexing method to transmit the transport block, and wherein the value of the rank is restricted by the modulation scheme. * * * * *